file system.
The function vfs_write_suspend stops all new write operations to a file
system, allows any file system modifying system calls already in progress
to complete, then sync's the file system to disk and returns. The
function vfs_write_resume allows the suspended write operations to
complete.
From FreeBSD with slight modifications.
Approved by: Frank van der Linden <fvdl@netbsd.org>
mv MNT_GONE, MNT_UNMOUNT and MNT_WANTRDWR to this field
additonally add mnt_writeopcountupper and mnt_writeopcountlower fields
in preparation for pending write suspension support work
bump kernel version to 1.6ZD
* Remove the "lwp *" argument that was added to vget(). Turns out
that nothing actually used it!
* Remove the "lwp *" arguments that were added to VFS_ROOT(), VFS_VGET(),
and VFS_FHTOVP(); all they did was pass it to vget() (which, as noted
above, didn't use it).
* Remove all of the "lwp *" arguments to internal functions that were added
just to appease the above.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
1. sa_len was not properly checked.
2. sa_family was not properly checked [even used as an array index!]
3. we only know about inet4 and inet6, so make sure that the corresponding
data is valid before using it.
4. keep reference counts of addresses used (is that necessary?)
- Under chroot it displays only the visible filesystems with appropriate paths.
- The statfs f_mntonname gets adjusted to contain the real path from root.
- While was there, fixed a bug in ext2fs, locking problems with vfs_getfsstat(),
and factored out some of the vfsop statfs() code to copy_statfs_info(). This
fixes the problem where some filesystems forgot to set fsid.
- Made coda look more like a normal fs.
malloc types into a structure, a pointer to which is passed around,
instead of an int constant. Allow the limit to be adjusted when the
malloc type is defined, or with a function call, as suggested by
Jonathan Stone.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
enough to be useful, and broadening it so that it did would have meant
that operations possibly requiring synchronous disk activity would have
to be done in splbio(). This clearly was not going to work.
Worked around this in the LFS case by having lfs_cluster_callback put an
extra hold on the vnode before calling biodone(), and taking the hold
off without HOLDRELE's problematic list swapping. lfs_vunref() will take
care of that---in thread context---on the next write if need be.
Also, ensure that the list walking in lfs_{writevnodes,segunlock,gather}
takes into account the possibility that the list may change
underneath it (possibly because it itself deleted an element).
Tested on i386, test-compiled on alpha.
first. This is necessary to avoid warnings with -fshort-enums. Casting
to an int really should be enough, but turns out not to be.
This change will be documented in doc/HACKS.
deal with shortages of the VM maps where the backing pages are mapped
(usually kmem_map). Try to deal with this:
* Group all information about the backend allocator for a pool in a
separate structure. The pool references this structure, rather than
the individual fields.
* Change the pool_init() API accordingly, and adjust all callers.
* Link all pools using the same backend allocator on a list.
* The backend allocator is responsible for waiting for physical memory
to become available, but will still fail if it cannot callocate KVA
space for the pages. If this happens, carefully drain all pools using
the same backend allocator, so that some KVA space can be freed.
* Change pool_reclaim() to indicate if it actually succeeded in freeing
some pages, and use that information to make draining easier and more
efficient.
* Get rid of PR_URGENT. There was only one use of it, and it could be
dealt with by the caller.
From art@openbsd.org.
VOP_PUTPAGES() just because the vnode has no pages. layered filesystems
will want to pass these calls on through to the underlying filesystem,
and non-layered filesystems may need to remove the vnode from the
syncer queues. fix up MP locking and add some locking assertions.
fixes PRs 12284 and 14640.