passed to sysctl_createv() actually matches the declared type for
the item itself.
In the places where the caller specifies a function and a structure
address (typically the 'softc') an explicit (void *) cast is now needed.
Fixes bugs in sys/dev/acpi/asus_acpi.c sys/dev/bluetooth/bcsp.c
sys/kern/vfs_bio.c sys/miscfs/syncfs/sync_subr.c and setting
AcpiGbl_EnableAmlDebugObject.
(mostly passing the address of a uint64_t when typed as CTLTYPE_INT).
I've test built quite a few kernels, but there may be some unfixed MD
fallout. Most likely passing &char[] to char *.
Also add CTLFLAG_UNSIGNED for unsiged decimals - not set yet.
implementation. Rewrite pseudodevice code to use cprng_strong(9).
The new pseudodevice is cloning, so each caller gets bits from a stream
generated with its own key. Users of /dev/urandom get their generators
keyed on a "best effort" basis -- the kernel will rekey generators
whenever the entropy pool hits the high water mark -- while users of
/dev/random get their generators rekeyed every time key-length bits
are output.
The underlying cprng_strong API can use AES-256 or AES-128, but we use
AES-128 because of concerns about related-key attacks on AES-256. This
improves performance (and reduces entropy pool depletion) significantly
for users of /dev/urandom but does cause users of /dev/random to rekey
twice as often.
Also fixes various bugs (including some missing locking and a reseed-counter
overflow in the CTR_DRBG code) found while testing this.
For long reads, this generator is approximately 20 times as fast as the
old generator (dd with bs=64K yields 53MB/sec on 2Ghz Core2 instead of
2.5MB/sec) and also uses a separate mutex per instance so concurrency
is greatly improved. For reads of typical key sizes for modern
cryptosystems (16-32 bytes) performance is about the same as the old
code: a little better for 32 bytes, a little worse for 16 bytes.
sucking up to 8192 bytes out of the kernel arc4random() generator at a
time. Supposedly some very old application code uses this to rekey
other instances of RC4 in userspace (a truly great idea). Reduce the
limit to 256 bytes -- and note that it will probably be reduced to
sizeof(int) in the future, since this node is so documented.
<20111022023242.BA26F14A158@mail.netbsd.org>. This change includes
the following:
An initial cleanup and minor reorganization of the entropy pool
code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are
fixed. Some effort is made to accumulate entropy more quickly at
boot time.
A generic interface, "rndsink", is added, for stream generators to
request that they be re-keyed with good quality entropy from the pool
as soon as it is available.
The arc4random()/arc4randbytes() implementation in libkern is
adjusted to use the rndsink interface for rekeying, which helps
address the problem of low-quality keys at boot time.
An implementation of the FIPS 140-2 statistical tests for random
number generator quality is provided (libkern/rngtest.c). This
is based on Greg Rose's implementation from Qualcomm.
A new random stream generator, nist_ctr_drbg, is provided. It is
based on an implementation of the NIST SP800-90 CTR_DRBG by
Henric Jungheim. This generator users AES in a modified counter
mode to generate a backtracking-resistant random stream.
An abstraction layer, "cprng", is provided for in-kernel consumers
of randomness. The arc4random/arc4randbytes API is deprecated for
in-kernel use. It is replaced by "cprng_strong". The current
cprng_fast implementation wraps the existing arc4random
implementation. The current cprng_strong implementation wraps the
new CTR_DRBG implementation. Both interfaces are rekeyed from
the entropy pool automatically at intervals justifiable from best
current cryptographic practice.
In some quick tests, cprng_fast() is about the same speed as
the old arc4randbytes(), and cprng_strong() is about 20% faster
than rnd_extract_data(). Performance is expected to improve.
The AES code in src/crypto/rijndael is no longer an optional
kernel component, as it is required by cprng_strong, which is
not an optional kernel component.
The entropy pool output is subjected to the rngtest tests at
startup time; if it fails, the system will reboot. There is
approximately a 3/10000 chance of a false positive from these
tests. Entropy pool _input_ from hardware random numbers is
subjected to the rngtest tests at attach time, as well as the
FIPS continuous-output test, to detect bad or stuck hardware
RNGs; if any are detected, they are detached, but the system
continues to run.
A problem with rndctl(8) is fixed -- datastructures with
pointers in arrays are no longer passed to userspace (this
was not a security problem, but rather a major issue for
compat32). A new kernel will require a new rndctl.
The sysctl kern.arandom() and kern.urandom() nodes are hooked
up to the new generators, but the /dev/*random pseudodevices
are not, yet.
Manual pages for the new kernel interfaces are forthcoming.
http://mail-index.netbsd.org/tech-userlevel/2011/08/25/msg005404.html
This is used by disk tools such as disklabel(8) to dynamically decide is
the undelyling platform uses a disklabel-in-mbr-partition or not
(instead of using a compile-time list of ports).
getlabelusesmbr() reads the sysctl kern.labelusesmbr, takes its value from the
machdep #define LABELUSESMBR.
For evbmips, make LABELUSESMBR 1 if the platform uses pmon
as bootloader, and 0 (the previous value) otherwise.
Rename real routines to proc_find() and pgrp_find(), remove PFIND_* flags
and have consistent behaviour. Provide proc_find_raw() for special cases.
Fix memory leak in sysctl_proc_corename().
COMPAT_LINUX: rework ptrace() locking, minimise differences between
different versions per-arch.
Note: while this change adds some formal cosmetics for COMPAT_DARWIN and
COMPAT_IRIX - locking there is utterly broken (for ages).
Fixes PR/43176.
variable assignments from here, kernel memory does not leak to
userspace.
Bug found, a little bit suprisingly, by the atf ps test which failed
due to the column width between the -o holdcnt column being too
wide due to the contents displayed being garbage.
as we don't have a process context to authorize on. Instead, traverse the
file descriptor table of each process -- as we already do in one case.
Introduce a "marker" we can use to mark files we've seen in an iteration, as
the same file can be referenced more than once.
Hopefully this availability of filtering by process also makes life easier
for those who are interested in implementing process "containers" etc.
- Addresses the issue described in PR/38828.
- Some simplification in threading and sleepq subsystems.
- Eliminates pmap_collect() and, as a side note, allows pmap optimisations.
- Eliminates XS_CTL_DATA_ONSTACK in scsipi code.
- Avoids few scans on LWP list and thus potentially long holds of proc_lock.
- Cuts ~1.5k lines of code. Reduces amd64 kernel size by ~4k.
- Removes __SWAP_BROKEN cases.
Tested on x86, mips, acorn32 (thanks <mpumford>) and partly tested on
acorn26 (thanks to <bjh21>).
Discussed on <tech-kern>, reviewed by <ad>.
- Avoid atomics in more places.
- Remove the per-descriptor mutex, and just use filedesc_t::fd_lock.
It was only being used to synchronize close, and in any case we needed
to take fd_lock to free the descriptor slot.
- Optimize certain paths for the <NDFDFILE case.
- Sprinkle more comments and assertions.
- Cache more stuff in filedesc_t.
- Fix numerous minor bugs spotted along the way.
- Restructure how the open files array is maintained, for clarity and so
that we can eliminate the membar_consumer() call in fd_getfile(). This is
mostly syntactic sugar; the main functional change is that fd_nfiles now
lives alongside the open file array.
Some measurements with libmicro:
- simple file syscalls are like close() are between 1 to 10% faster.
- some nice improvements, e.g. poll(1000) which is ~50% faster.
address space available to processes. this limit exists in most other
modern unix variants, and like most of them, our defaults are unlimited.
remove the old mmap / rlimit.datasize hack.
- adds the VMCMD_STACK flag to all the stack-creation vmcmd callers.
it is currently unused, but was added a few years ago.
- add a pair of new process size values to kinfo_proc2{}. one is the
total size of the process memory map, and the other is the total size
adjusted for unused stack space (since most processes have a lot of
this...)
- patch sh, and csh to notice RLIMIT_AS. (in some cases, the alias
RLIMIT_VMEM was already present and used if availble.)
- patch ps, top and systat to notice the new k_vm_vsize member of
kinfo_proc2{}.
- update irix, svr4, svr4_32, linux and osf1 emulations to support
this information. (freebsd could be done, but that it's best left
as part of the full-update of compat/freebsd.)
this addresses PR 7897. it also gives correct memory usage values,
which have never been entirely correct (since mmap), and have been
very incorrect since jemalloc() was enabled.
tested on i386 and sparc64, build tested on several other platforms.
thanks to many folks for feedback and testing but most espcially
chuq and yamt for critical suggestions that lead to this patch not
having a special ugliness i wasn't happy with anyway :-)
security.curtain=1
If the kauth call failed, we'd silently continue the loop, but the error
code would remain and eventually "leak" to userspace. Reset the error to
zero when continuing.
Tested by snj@ and myself. Okay snj@.
first lwp in the list is the last created and in the firefox and gtk-gnash
case this is usually a zombie, so the status in ps was ZLl. This now picks
the lwp in order ONPROC > RUN > SLEEP > STOP > SUSPENDED > IDL > DEAD > ZOMB
and breaks ties using cpticks.