rtcache_init and rtcache_init_noclone lookup ro_dst and store
the result in ro_rt, taking care of the reference counting and
calling the domain specific route cache.
rtcache_free checks if a route was cashed and frees the reference.
rtcache_copy copies ro_dst of the given struct route, checking that
enough space is available and incrementing the reference count of the
cached rtentry if necessary.
rtcache_check validates that the cached route is still up. If it isn't,
it tries to look it up again. Afterwards ro_rt is either a valid again
or NULL.
rtcache_copy is used internally.
Adjust to callers of rtalloc/rtflush in the tree to check the sanity of
ro_dst first (if necessary). If it doesn't fit the expectations, free
the cache, otherwise check if the cached route is still valid. After
that combination, a single check for ro_rt == NULL is enough to decide
whether a new lookup needs to be done with a different ro_dst.
Make the route checking in gre stricter by repeating the loop check
after revalidation.
Remove some unused RADIX_MPATH code in in6_src.c. The logic is slightly
changed here to first validate the route and check RTF_GATEWAY
afterwards. This is sementically equivalent though.
etherip doesn't need sc_route_expire similiar to the gif changes from
dyoung@ earlier.
Based on the earlier patch from dyoung@, reviewed and discussed with
him.
routing caused by stale route caches (struct route). Route caches
are sprinkled throughout PCBs, the IP fast-forwarding table, and
IP tunnel interfaces (gre, gif, stf).
Stale IPv6 and ISO route caches will be treated by separate patches.
Thank you to Christoph Badura for suggesting the general approach
to invalidating route caches that I take here.
Here are the details:
Add hooks to struct domain for tracking and for invalidating each
domain's route caches: dom_rtcache, dom_rtflush, and dom_rtflushall.
Introduce helper subroutines, rtflush(ro) for invalidating a route
cache, rtflushall(family) for invalidating all route caches in a
routing domain, and rtcache(ro) for notifying the domain of a new
cached route.
Chain together all IPv4 route caches where ro_rt != NULL. Provide
in_rtcache() for adding a route to the chain. Provide in_rtflush()
and in_rtflushall() for invalidating IPv4 route caches. In
in_rtflush(), set ro_rt to NULL, and remove the route from the
chain. In in_rtflushall(), walk the chain and remove every route
cache.
In rtrequest1(), call rtflushall() to invalidate route caches when
a route is added.
In gif(4), discard the workaround for stale caches that involves
expiring them every so often.
Replace the pattern 'RTFREE(ro->ro_rt); ro->ro_rt = NULL;' with a
call to rtflush(ro).
Update ipflow_fastforward() and all other users of route caches so
that they expect a cached route, ro->ro_rt, to turn to NULL.
Take care when moving a 'struct route' to rtflush() the source and
to rtcache() the destination.
In domain initializers, use .dom_xxx tags.
KNF here and there.
prototypes for the IPv6 ECN ingress/egress functions in sys/netinet/ip_ecn.h,
inside an #ifdef INET6 wrapper. So, wrap sys/netipsec ocurrences of
#include <netinet6/ip6_ecn.h>
in #ifdef __FreeBSD__/#endif, until both camps can agree on this
teensy little piece of namespace. Affects:
ipsec_output.c xform_ah.c xform_esp.c xform_ipip.c
is NULL, otherwise ipsec4_process_packet() may try to m_freem() a
bad pointer.
In ipsec4_process_packet(), don't try to m_freem() 'm' twice; ipip_output()
already did it.
repository by christos was part 1). netipsec should now be back as it
was on 2003-09-11, with some very minor changes:
1) Some residual platform-dependent code was moved from ipsec.h to
ipsec_osdep.h; without this, IPSEC_ASSERT() was multiply defined. ipsec.h
now includes ipsec_osdep.h
2) itojun's renaming of netipsec/files.ipsec to netipsec/files.netipsec has
been left in place (it's arguable which name is less confusing but the
rename is pretty harmless).
3) Some #endif TOKEN has been replaced by #endif /* TOKEN */; #endif TOKEN
is invalid and GCC 3 won't compile it.
An i386 kernel with "options FAST_IPSEC" and "options OPENCRYPTO" now
gets through "make depend" but fails to build with errors in ip_input.c.
But it's better than it was (thank heaven for small favors).
is assumed to be in host byteorder during the input(?) path. NetBSD
keeps ip_off and ip_len in network order. Add (or remove) byteswaps
accordingly. TCP over fast_ipsec now works with PMTU, as well as without.
configured with ``options FAST_IPSEC''. Kernels with KAME IPsec or
with no IPsec should work as before.
All calls to ip_output() now always pass an additional compulsory
argument: the inpcb associated with the packet being sent,
or 0 if no inpcb is available.
Fast-ipsec tested with ICMP or UDP over ESP. TCP doesn't work, yet.
Fast-IPsec is a rework of the OpenBSD and KAME IPsec code, using the
OpenCryptoFramework (and thus hardware crypto accelerators) and
numerous detailed performance improvements.
This import is (aside from SPL-level names) the FreeBSD source,
imported ``as-is'' as a historical snapshot, for future maintenance
and comparison against the FreeBSD source. For now, several minor
kernel-API differences are hidden by macros a shim file, ipsec_osdep.h,
which (aside from SPL names) can be targeted at either NetBSD or FreeBSD.