routing caused by stale route caches (struct route). Route caches
are sprinkled throughout PCBs, the IP fast-forwarding table, and
IP tunnel interfaces (gre, gif, stf).
Stale IPv6 and ISO route caches will be treated by separate patches.
Thank you to Christoph Badura for suggesting the general approach
to invalidating route caches that I take here.
Here are the details:
Add hooks to struct domain for tracking and for invalidating each
domain's route caches: dom_rtcache, dom_rtflush, and dom_rtflushall.
Introduce helper subroutines, rtflush(ro) for invalidating a route
cache, rtflushall(family) for invalidating all route caches in a
routing domain, and rtcache(ro) for notifying the domain of a new
cached route.
Chain together all IPv4 route caches where ro_rt != NULL. Provide
in_rtcache() for adding a route to the chain. Provide in_rtflush()
and in_rtflushall() for invalidating IPv4 route caches. In
in_rtflush(), set ro_rt to NULL, and remove the route from the
chain. In in_rtflushall(), walk the chain and remove every route
cache.
In rtrequest1(), call rtflushall() to invalidate route caches when
a route is added.
In gif(4), discard the workaround for stale caches that involves
expiring them every so often.
Replace the pattern 'RTFREE(ro->ro_rt); ro->ro_rt = NULL;' with a
call to rtflush(ro).
Update ipflow_fastforward() and all other users of route caches so
that they expect a cached route, ro->ro_rt, to turn to NULL.
Take care when moving a 'struct route' to rtflush() the source and
to rtcache() the destination.
In domain initializers, use .dom_xxx tags.
KNF here and there.
Also, add ioctls SIOCGIFADDRPREF/SIOCSIFADDRPREF to get/set preference
numbers for addresses. Make ifconfig(8) set/display preference
numbers.
To activate source-address selection policies in your kernel, add
'options IPSELSRC' to your kernel configuration.
Miscellaneous changes in support of source-address selection:
1 Factor out some common code, producing rt_replace_ifa().
2 Abbreviate a for-loop with TAILQ_FOREACH().
3 Add the predicates on IPv4 addresses IN_LINKLOCAL() and
IN_PRIVATE(), that are true for link-local unicast
(169.254/16) and RFC1918 private addresses, respectively.
Add the predicate IN_ANY_LOCAL() that is true for link-local
unicast and multicast.
4 Add IPv4-specific interface attach/detach routines,
in_domifattach and in_domifdetach, which build #ifdef
IPSELSRC.
See in_getifa(9) for a more thorough description of source-address
selection policy.
with spl used to protect other allocations and frees, or datastructure
element insertion and removal, in adjacent code.
It is almost unquestionably the case that some of the spl()/splx() calls
added here are superfluous, but it really seems wrong to see:
s=splfoo();
/* frob data structure */
splx(s);
pool_put(x);
and if we think we need to protect the first operation, then it is hard
to see why we should not think we need to protect the next. "Better
safe than sorry".
It is also almost unquestionably the case that I missed some pool
gets/puts from interrupt context with my strategy for finding these
calls; use of PR_NOWAIT is a strong hint that a pool may be used from
interrupt context but many callers in the kernel pass a "can wait/can't
wait" flag down such that my searches might not have found them. One
notable area that needs to be looked at is pf.
See also:
http://mail-index.netbsd.org/tech-kern/2006/07/19/0003.htmlhttp://mail-index.netbsd.org/tech-kern/2006/07/19/0009.html
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html
to pool_init. Untouched pools are ones that either in arch-specific
code, or aren't initialiased during initial system startup.
Convert struct session, ucred and lockf to pools.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
deal with shortages of the VM maps where the backing pages are mapped
(usually kmem_map). Try to deal with this:
* Group all information about the backend allocator for a pool in a
separate structure. The pool references this structure, rather than
the individual fields.
* Change the pool_init() API accordingly, and adjust all callers.
* Link all pools using the same backend allocator on a list.
* The backend allocator is responsible for waiting for physical memory
to become available, but will still fail if it cannot callocate KVA
space for the pages. If this happens, carefully drain all pools using
the same backend allocator, so that some KVA space can be freed.
* Change pool_reclaim() to indicate if it actually succeeded in freeing
some pages, and use that information to make draining easier and more
efficient.
* Get rid of PR_URGENT. There was only one use of it, and it could be
dealt with by the caller.
From art@openbsd.org.
on gateway change, copy rmx_mtu from gateway only under the following condition:
- current MTU is not locked
- current MTU was discovered via PMTUD
XXX if gateway has MTU == 0, current MTU is set to 0 and we are going to
rediscover PMTU again. is it good or bad?
adds rt_parent to link parent from child (like NRL did, ours do refcnt
rt_refcnt properly).
bsdi rt_walkbranch would speedup the processing, but since the code will not
be visited too frequently, the current code (with rt_walktree) should be okay.
let static routes overwrite cloned routes, as cloned routes can come back again
if necessary. behavior same as freebsd/bsdi, code partially from bsdi42.
(NRL rt->rt_parent was not added)
should fix PR 11916 and maybe some other PRs with ARP behavior.
recompilation of usr.sbin/route6d is suggested.
have sys/net/route.c:rtrequest1(), which takes rt_addrinfo * as the argument.
pass rt_addrinfo all the way down to rtrequest, and ifa->ifa_rtrequest.
3rd arg of ifa->ifa_rtrequest is now rt_addrinfo * instead of sockaddr *
(almost noone is using it anyways).
benefit: the follwoing command now works. previously we need two route(8)
invocations, "add" then "change".
# route add -inet6 default ::1 -ifp gif0
remove unsafe typecast in rtrequest(), from rtentry * to sockaddr *. it was
introduced by 4.3BSD-reno and never corrected.
XXX is eon_rtrequest() change correct regarding to 3rd arg?
eon_rtrequest() and rtrequest() were incorrect since 4.3BSD-reno,
so i do not have correct answer in the source code.
someone with more clue about netiso-over-ip, please help.
mandatory for IPv6 (so we can't just validate by using connected pcb - we need
to allow traffic from unconnected pcb to do pmtud).
- if the traffic is validated by xx_ctlinput, allow up to "hiwat" pmtud
route entries.
- if the traffic was not validated by xx_ctlinput, allow up to "lowat" pmtud
route entries (there's upper limit, so bad guys cannot blow up our routing
table).
sync with kame
XXX need to think again about default hiwat/lowat value.
XXX victim selection to help starvation case
timeout()/untimeout() API:
- Clients supply callout handle storage, thus eliminating problems of
resource allocation.
- Insertion and removal of callouts is constant time, important as
this facility is used quite a lot in the kernel.
The old timeout()/untimeout() API has been removed from the kernel.