This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
counters. These counters do not exist on all CPUs, but where they
do exist, can be used for counting events such as dcache misses that
would otherwise be difficult or impossible to instrument by code
inspection or hardware simulation.
pmc(9) is meant to be a general interface. Initially, the Intel XScale
counters are the only ones supported.
- By default, use disklabels in the native endian.
- With options BSDDISKLABEL_EI, kernels can read/write labels
in the opposite endian.
- With options COMPAT_MMEYE_OLDLABEL, kernels accept labels
in format used on old mmeyes.
(Some old mmeyes have "the bootstrap kernel to load kernel from disks"
on their flash ROMs and it is not easy to update kernels on the ROMs.)
- While here, use leXXtoh() to read some values in MBR.
* struct sigacts gets a new sigact_sigdesc structure, which has the
sigaction and the trampoline/version. Version 0 means "legacy kernel
provided trampoline". Other versions are coordinated with machine-
dependent code in libc.
* sigaction1() grows two more arguments -- the trampoline pointer and
the trampoline version.
* A new __sigaction_sigtramp() system call is provided to register a
trampoline along with a signal handler.
* The handler is no longer passed to sensig() functions. Instead,
sendsig() looks up the handler by peeking in the sigacts for the
process getting the signal (since it has to look in there for the
trampoline anyway).
* Native sendsig() functions now select the appropriate trampoline and
its arguments based on the trampoline version in the sigacts.
Changes to libc to use the new facility will be checked in later. Kernel
version not bumped; we will ride the 1.6C bump made recently.
tested true if the CPU was running in the kernel at the time of the clock
interrupt, therefore all such time (kernel and idle) was counted as interrupt
time. The new definition simply punts on trying to count interrupt time,
which allows us to see kernel and idle time.