doing copy-on-write.
- Change VFS_SNAPSHOT() to return the snapshot vnode locked.
- Make the IO path for copy-on-write and snapshot-read more lightweight.
Avoids deadlocks where vn_rdwr(...READ...) has a shared lock and needs
to copy-on-write.
Avoids deadlocks/panics where to clean pages the copy-on-write needs
to allocate pages for its VOP_PUTPAGES().
L_COWINPROGRESS part approved by: Jason R. Thorpe <thorpej@netbsd.org>
- Not enabled by default. Needs kernel option FFS_SNAPSHOT.
- Change parameters of ffs_blkfree.
- Let the copy-on-write functions return an error so spec_strategy
may fail if the copy-on-write fails.
- Change genfs_*lock*() to use vp->v_vnlock instead of &vp->v_lock.
- Add flag B_METAONLY to VOP_BALLOC to return indirect block buffer.
- Add a function ffs_checkfreefile needed for snapshot creation.
- Add special handling of snapshot files:
Snapshots may not be opened for writing and the attributes are read-only.
Use the mtime as the time this snapshot was taken.
Deny mtime updates for snapshot files.
- Add function transferlockers to transfer any waiting processes from
one lock to another.
- Add vfsop VFS_SNAPSHOT to take a snapshot and make it accessible through
a vnode.
- Add snapshot support to ls, fsck_ffs and dump.
Welcome to 2.0F.
Approved by: Jason R. Thorpe <thorpej@netbsd.org>
and tweak lkminit_*.c (where applicable) to call them, and to call
sysctl_teardown() when being unloaded.
This consists of (1) making setup functions not be static when being
compiled as lkms (change to sys/sysctl.h), (2) making prototypes
visible for the various setup functions in header files (changes to
various header files), and (3) making simple "load" and "unload"
functions in the actual lkminit stuff.
linux_sysctl.c also needs its root exposed (ie, made not static) for
this (when built as an lkm).
an _LKM.
This adds pools to the list of things that lkms must do manually
because they're set up with link sets. Not that there's anything
wrong with link sets, but that we need to try harder to remember that
lkms are second class citizens. Of a sort.
there are now alternate non-kernel checks and fixes for this problem.
relevent prs include:
bin/17910 kern/21283 kern/21404 port-macppc/23925 port-macppc/23926
install/25138
to pool_init. Untouched pools are ones that either in arch-specific
code, or aren't initialiased during initial system startup.
Convert struct session, ucred and lockf to pools.
enforces an unnecessary restriction that the superblock be in the
particular expected locations. Also, the compatibility case is
handled in ffs_oldfscompat_read.
Ensure that we don't use the first alternate superblock of a ffsv1
filesystem with 64k blocks (it is in the same place as an ffsv2 sb).
Fixes part of PR kern/24809
not being at 8k - causes all sorts of problems, in particular with
ffsv1 filessytems with 64k blocks, and disks that are reformatted from
ffsv1 to ffsv2 (and v.v.). see also PR kern/24809
VOP_STRATEGY(bp) is replaced by one of two new functions:
- VOP_STRATEGY(vp, bp) Call the strategy routine of vp for bp.
- DEV_STRATEGY(bp) Call the d_strategy routine of bp->b_dev for bp.
DEV_STRATEGY(bp) is used only for block-to-block device situations.
suspending.
Move vfs_write_suspend() and vfs_write_resume() from kern/vfs_vnops.c
to kern/vfs_subr.c.
Change vnode write gating in ufs/ffs/ffs_softdep.c (from FreeBSD).
When vnodes are throttled in softdep_trackbufs() check for
file system suspension every 10 msecs to avoid a deadlock.
it can be used to clear the work queue.
Cleanup ffs_sync() which did not synchronously wait when MNT_WAIT
was specified. Clear the work queue when MNT_WAIT is specified.
Result is a clean on-disk file system after ffs_sync(.., MNT_WAIT, ..)
From FreeBSD.
add compatibility for filesystems created before FFSv2 integration
these patches are from pr port-macppc/23926 and should also fix
problems discussed in pr kern/21404 and pr kern/21283
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
ffs_isblock:
check if a block is available
returns true if all the correponding bits in the free map are 1
returns false if any corresponding bit in the free map is 0
ffs_isfreeblock:
check if a block is completely allocated
returns true if all the corresponding bits in the free map are 0
returns false if any corresponding bit in the free map is 1