memory regions are "potentially overlapping" to a test that determines
that the regions are actually overlapping. Because the code for the
overlapping case is seven instructions longer, this signifcantly
improves performance in the average case.
for the address of a variable used to store the error number instead
of writing to the global errno.
In a multi-threaded program, __errno() will return a pointer to a
thread-specific variable.
SYSCALL_NOERROR(x): Like SYSCALL except that "x" is a syscall
that can never fail.
RSYSCALL_NOERROR(x): Like RSYSCALL except that "x" is a syscall
that can never fail.
These macros simply call SYSCALL / RSYSCALL, and serve as placeholders
until an optimized implementation is done.
Changed all instances of ENTRY() to match the new calling convention
(it takes a second argument ).
Added new macros:
SYSTRAP(x): Expands to the code used to call syscall x.
This is used to simplify other macros.
SYSCALL_NOERROR(x): Like SYSCALL except that "x" is a syscall
that can never fail.
RSYSCALL_NOERROR(x): Like RSYSCALL except that "x" is a syscall
that can never fail.
SYSTRAP(x): Expands to the code used to call syscall x.
This is used to simplify other macros.
SYSCALL_NOERROR(x): Like SYSCALL except that "x" is a syscall
that can never fail.
RSYSCALL_NOERROR(x): Like RSYSCALL except that "x" is a syscall
that can never fail.
SYSTRAP(x): Expands to the code used to call syscall x.
This is used to simplify other macros.
SYSCALL_NOERROR(x): Like SYSCALL except that "x" is a syscall
that can never fail.
RSYSCALL_NOERROR(x): Like RSYSCALL except that "x" is a syscall
that can never fail.
SYSTRAP(x): Expands to the code used to call syscall x.
This is used to simplify other macros.
SYSCALL_NOERROR(x): Like SYSCALL except that "x" is a syscall
that can never fail.
RSYSCALL_NOERROR(x): Like RSYSCALL except that "x" is a syscall
that can never fail.