This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
counters. These counters do not exist on all CPUs, but where they
do exist, can be used for counting events such as dcache misses that
would otherwise be difficult or impossible to instrument by code
inspection or hardware simulation.
pmc(9) is meant to be a general interface. Initially, the Intel XScale
counters are the only ones supported.
some systems chokes if the buffer is not 8-byte aligned. GCC only aligns
character arrays to 4-byte boundaries by default, so it's possible to get
unlucky and die in the boot blocks with a "kernel stack not valid halt".
Avoid the problem by using a local, aligned buffer as the argument to GET_ENV,
and copying the result into the caller's buffer.
Should fix PRs port-alpha/17682 and port-alpha/17717.
CVS ----------------------------------------------------------------------
be properly used by any misc. cloning device. While here, correct
a comment to indicate that "open" is the only entry point and that
everything else is handled with fileops.
MALLOC_NOINLINE, and VNODE_OP_NOINLINE. The exceptions are when they
include another config files that already defines the options, or if
they are for an embedded board, just define a few extra options, and
do not already define PIPE_SOCKETPAIR.
* struct sigacts gets a new sigact_sigdesc structure, which has the
sigaction and the trampoline/version. Version 0 means "legacy kernel
provided trampoline". Other versions are coordinated with machine-
dependent code in libc.
* sigaction1() grows two more arguments -- the trampoline pointer and
the trampoline version.
* A new __sigaction_sigtramp() system call is provided to register a
trampoline along with a signal handler.
* The handler is no longer passed to sensig() functions. Instead,
sendsig() looks up the handler by peeking in the sigacts for the
process getting the signal (since it has to look in there for the
trampoline anyway).
* Native sendsig() functions now select the appropriate trampoline and
its arguments based on the trampoline version in the sigacts.
Changes to libc to use the new facility will be checked in later. Kernel
version not bumped; we will ride the 1.6C bump made recently.
- implement SIMPLEQ_REMOVE(head, elm, type, field). whilst it's O(n),
this mirrors the functionality of SLIST_REMOVE() (the other
singly-linked list type) and FreeBSD's STAILQ_REMOVE()
- remove the unnecessary elm arg from SIMPLEQ_REMOVE_HEAD().
this mirrors the functionality of SLIST_REMOVE_HEAD() (the other
singly-linked list type) and FreeBSD's STAILQ_REMOVE_HEAD()
- remove notes about SIMPLEQ not supporting arbitrary element removal
- use SIMPLEQ_FOREACH() instead of home-grown for loops
- use SIMPLEQ_EMPTY() appropriately
- use SIMPLEQ_*() instead of accessing sqh_first,sqh_last,sqe_next directly
- reorder manual page; be consistent about how the types are listed
- other minor cleanups
NULL for root PCI busses. For busses behind a bridge, it points to
a persistent copy of the bridge's pcitag_t. This can be very useful
for machine-dependent PCI bus enumeration code.
* Implement a machine-dependent pci_enumerate_bus() for sparc64 which
uses OFW device nodes to enumerate the bus. When a PCI bus that is
behind a bridge is attached, pci_attach_hook() allocates a new PCI
chipset tag for the new bus and sets it's "curnode" to the OFW node
of the bridge. This is used as a starting point when enumerating
that bus. Root busses get the OFW node of the host bridge (psycho).
* Garbage-collect "ofpci" and "ofppb" from the sparc64 port.