cases with in-kernel consumers which might send data on the same socket,
we can deadlock on the reassembly queue otherwise (observed while testing
accept filters).
support for specifying an accept filter for a service (mostly as a usage
example, but it can be handy for other things). Manual pages to follow
in a day or so.
OK core@.
- Socket layer becomes MP safe.
- Unix protocols become MP safe.
- Allows protocol processing interrupts to safely block on locks.
- Fixes a number of race conditions.
With much feedback from matt@ and plunky@.
- Make ipflow_reap() private to ip_flow.c, and introduce ipflow_prune()
for external callers to use (avoids returning an ipflow * that is never
actually used anyway).
Otherwise we end up sending a dubious "0" whenever we cannot find a
proper association for the packet.
- Reset sack_newdata along with snd_nxt to avoid improper integer
arithmetics that lead to sending data from an incorrect place in the
stream, making it appear as corrupted.
Patch by Michael Van Elst, based on an analysis by Michael for the IPSEC
stuff and I for the SACK issue.
- Add a lot of missing selinit() and seldestroy() calls.
- Merge selwakeup() and selnotify() calls into a single selnotify().
- Add an additional 'events' argument to selnotify() call. It will
indicate which event (POLL_IN, POLL_OUT, etc) happen. If unknown,
zero may be used.
Note: please pass appropriate value of 'events' where possible.
Proposed on: <tech-kern>
- add a comment to explain why:
+ * We start with 1, because 0 doesn't work with linux, which
+ * considers timestamp 0 in a SYN packet as a bug and disables
+ * timestamps.
revision 1.230
date: 2005/06/30 02:58:28; author: christos; state: Exp; lines: +20 -4
Normalize our PAWS code with Free and Open, as mentioned in tech-security.
reviewed by christos@ and matt@.
- All three functions are included in the kernel by default.
They call a backend function cpu_in_cksum after possibly
computing the checksum of the pseudo header.
- cpu_in_cksum is the core to implement the one-complement sum.
The default implementation is moderate fast on most platforms
and provides a 32bit accumulator with 16bit addends for L32 platforms
and a 64bit accumulator with 32bit addends for L64 platforms.
It handles edge cases like very large mbuf chains (could happen with
native IPv6 in the future) and provides a good base for new native
implementations.
- Modify i386 and amd64 assembly to use the new interface.
This disables the MD implementations on !x86 until the conversion is
done. For Alpha, the portable version is faster.
Only record an IPSEC_OUT_DONE tag when we have finished the processing
In ip{,6}_output, check this tag to know if we have already processed this
packet.
Remove some dead code (IPSEC_PENDING_TDB is not used in NetBSD)
Fix pr/36870
primarily used with TCP SYN and RST packets and such packets are less than
the smallest sized packet that an IP stack is allowed to fragment, we simply
set ip_id to 0 for all packets 68 bytes or less.
Add if_set_sadl() that both sets the link-layer address length and
replaces the current link-layer address with a new one, and use it
throughout the tree.
to _ro_rt. Use rtcache_getrt() to access a route cache's struct
rtentry *.
Introduce struct ifnet->if_dl that always points at the interface
identifier/link-layer address. Make code that treated the first
ifaddr on struct ifnet->if_addrlist as the interface address use
if_dl, instead.
Remove stale debugging code from net/route.c. Move the rtflush()
code into rtcache_clear() and delete rtflush(). Delete rtalloc(),
because nothing uses it any more.
Make ND6_HINT an inline, lowercase subroutine, nd6_hint.
I've done my best to convert IP Filter, the ISO stack, and the
AppleTalk stack to rtcache_getrt(). They compile, but I have not
tested them. I have given the changes to PF, GRE, IPv4 and IPv6
stacks a lot of exercise.
in_pcbbind().
Okay dyoung@.
Note that the network code is another candidate for major cleanup... also
note that this issue is likely to be present in netinet6 code, too.
instead of adding/subtracting our own IPv4 header.
There are many benefits: gre(4) needn't grok the outer encapsulation
header any longer, so this simplifies the gre(4) code. The IP
stack needn't grok GRE, so it is simplified, too. gre(4) will
benefit from optimizations in the socket code. Eventually, gre(4)
will gain an IPv6 encapsulation with very few new lines of code.
There is a small performance loss. A 133 MHz, 486-class AMD Elan
sinks/sources a TCP stream over GRE with about 93% the throughput
of the old code. TCP throughput on a 266 MHz, 586-class AMD Geode
is about 96% the throughput of the old code. A 175-MHz ADM5120
(MIPS) only sinks a TCP stream over GRE at about 90% of the old
code; I am still investigating that.
I produced stripped-down versions of sosend() and soreceive() for
gre(4) to use. They are guaranteed not to block, so they can be
called from a software interrupt and from a socket upcall,
respectively.
A kernel thread is no longer necessary for socket transmit/receive,
but I didn't get around to removing it, yet.
Thanks to Matt Thomas for suggesting the use of stripped-down socket
code and software interrupts, and to Andrew Doran for advice and
answers concerning software interrupts, threads, and performance.
closer to its single caller in if_eon.c, try to move fewer bytes
by moving the IP header forward instead of moving the tail of the
mbuf backward, and use m_adj(9) instead of fiddling directly with
mbuf data members.
ifreq * arguments to ether_addmulti() and ether_delmulti() to const
struct sockaddr *, since ether_{add,del}multi() only ever read the
sockaddr ifreq member, ifr_addr. Update uses in carp(4) and in
vlan(4).
tells a socket that it should both add a protocol header to tx'd
datagrams and remove the header from rx'd datagrams:
int onoff = 1, s = socket(...);
setsockopt(s, SOL_SOCKET, SO_NOHEADER, &onoff);
2) Add an implementation of (SOL_SOCKET, SO_NOHEADER) for raw IPv4
sockets.
3) Reorganize the protocols' pr_ctloutput implementations a bit.
Consistently return ENOPROTOOPT when an option is unsupported,
and EINVAL if a supported option's arguments are incorrect.
Reorganize the flow of code so that it's more clear how/when
options are passed down the stack until they are handled.
Shorten some pr_ctloutput staircases for readability.
4) Extract common mbuf code into subroutines, add new sockaddr
methods, and introduce a new subroutine, fsocreate(), for reuse
later; use it first in sys_socket():
struct mbuf *m_getsombuf(struct socket *so)
Create an mbuf and make its owner the socket `so'.
struct mbuf *m_intopt(struct socket *so, int val)
Create an mbuf, make its owner the socket `so', put the
int `val' into it, and set its length to sizeof(int).
int fsocreate(..., int *fd)
Create a socket, a la socreate(9), put the socket into the
given LWP's descriptor table, return the descriptor at `fd'
on success.
void *sockaddr_addr(struct sockaddr *sa, socklen_t *slenp)
const void *sockaddr_const_addr(const struct sockaddr *sa, socklen_t *slenp)
Extract a pointer to the address part of a sockaddr. Write
the length of the address part at `slenp', if `slenp' is
not NULL.
socklen_t sockaddr_getlen(const struct sockaddr *sa)
Return the length of a sockaddr. This just evaluates to
sa->sa_len. I only add this for consistency with code that
appears in a portable userland library that I am going to
import.
const struct sockaddr *sockaddr_any(const struct sockaddr *sa)
Return the "don't care" sockaddr in the same family as
`sa'. This is the address a client should sobind(9) if it
does not care the source address and, if applicable, the
port et cetera that it uses.
const void *sockaddr_anyaddr(const struct sockaddr *sa, socklen_t *slenp)
Return the "don't care" sockaddr in the same family as
`sa'. This is the address a client should sobind(9) if it
does not care the source address and, if applicable, the
port et cetera that it uses.
because that's just going to cause problems down the road. (Suppose
we can have two CPUs in the network stack someday?) Instead, use
sockaddr_in_init() to initialize a sockaddr_in on the stack.
Use ifreq_setaddr() to initialize ifreq.ifr_addr.
and dom_sa_len members from struct domain. Pools of fixed-size
objects are too rigid for sockaddr_dls, whose size can vary over
a wide range.
Return sockaddr_dl to its "historical" size. Now that I'm using
malloc(9) instead of pool(9) to allocate sockaddr_dl, I can create
a sockaddr_dl of any size in the kernel, so expanding sockaddr_dl
is useless.
Avoid using sizeof(struct sockaddr_dl) in the kernel.
Introduce sockaddr_dl_alloc() for allocating & initializing an
arbitrary sockaddr_dl on the heap.
Add an argument, the sockaddr length, to sockaddr_alloc(),
sockaddr_copy(), and sockaddr_dl_setaddr().
Constify: LLADDR() -> CLLADDR().
Where the kernel overwrites LLADDR(), use sockaddr_dl_setaddr(),
instead. Used properly, sockaddr_dl_setaddr() will not overrun
the end of the sockaddr.
Ethernet multicast address.
Reported by jmcneill@, fix discussed with dyoung@, _very_ light testing by
myself, some more money for my dealer of anxiolytics after reading
ip_output()'s twisted code maze.
identify sockaddr_dl abuse that remains in the kernel, especially
the potential for overwriting memory past the end of a sockaddr_dl
with, e.g., memcpy(LLADDR(), ...).
Use sockaddr_dl_setaddr() in a few places.
at IPL_NET, because rtcache_check() may read the forwarding table.
Elsewhere, the kernel only blocks interrupts at priority IPL_SOFTNET
and below while it modifies the forwarding table, so rtcache_check()
could be reading the table in an inconsistent state. Use
rtcache_done(), instead.
XXX netinet/ip_flow.c and netinet6/ip6_flow.c are virtually identical.
XXX They should share code.
from the forwarding table's users:
Introduce rt_walktree() for walking the routing table and
applying a function to each rtentry. Replace most
rn_walktree() calls with it.
Use rt_getkey()/rt_setkey() to get/set a route's destination.
Keep a pointer to the sockaddr key in the rtentry, so that
rtentry users do not have to grovel in the radix_node for
the key.
Add a RTM_GET method to rtrequest. Use that instead of
radix_node lookups in, e.g., carp(4).
Add sys/net/link_proto.c, which supplies sockaddr routines for
link-layer socket addresses (sockaddr_dl).
Cosmetic:
Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH,
et cetera. Use NULL instead of 0 for null pointers. Use
__arraycount(). Reduce gratuitous parenthesization.
Stop using variadic arguments for rip6_output(), it is
unnecessary.
Remove the unnecessary rtentry member rt_genmask and the
code to maintain it, since nothing actually used it.
Make rt_maskedcopy() easier to read by using meaningful variable
names.
Extract a subroutine intern_netmask() for looking up a netmask in
the masks table.
Start converting backslash-ridden IPv6 macros in
sys/netinet6/in6_var.h into inline subroutines that one
can read without special eyeglasses.
One functional change: when the kernel serves an RTM_GET, RTM_LOCK,
or RTM_CHANGE request, it applies the netmask (if supplied) to a
destination before searching for it in the forwarding table.
I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove
the unlawful radix_node knowledge.
Apart from the changes to carp(4), netiso, ATM, and strip(4), I
have run the changes on three nodes in my wireless routing testbed,
which involves IPv4 + IPv6 dynamic routing acrobatics, and it's
working beautifully so far.
set to rn_walktree.
Introduce rt_walktree(), which applies a subroutine to every route
in a particular address family. Use it instead of rn_walktree()
virtually everywhere. This helps to hide the routing table
implementation.
- don't use void * for pointer arithmetic
- don't try to modify const parameters
A kernel with 'options TCP_SIGNATURE' works as well as it ever did, now.
(ie, clunky, but passable)
the struct tcphdr * argument of tcp_dooptions(). RFC2385 support
(options TCP_SIGNATURE) needs to modify the header during options
processing, and this revision broke it.
OK yamt@.
avoid an indirect function call by comparing the family, length,
and bytes [dom->dom_sa_cmpofs, dom->dom_sa_cmpofs + dom->dom_sa_cmplen),
corresponding to the the sockaddrs' "address" members.
For ISO, actually use sockaddr_iso_cmp, for a change. Thanks to
yamt@ for pointing out my error.
route_in6, struct route_iso), replacing all caches with a struct
route.
The principle benefit of this change is that all of the protocol
families can benefit from route cache-invalidation, which is
necessary for correct routing. Route-cache invalidation fixes an
ancient PR, kern/3508, at long last; it fixes various other PRs,
also.
Discussions with and ideas from Joerg Sonnenberger influenced this
work tremendously. Of course, all design oversights and bugs are
mine.
DETAILS
1 I added to each address family a pool of sockaddrs. I have
introduced routines for allocating, copying, and duplicating,
and freeing sockaddrs:
struct sockaddr *sockaddr_alloc(sa_family_t af, int flags);
struct sockaddr *sockaddr_copy(struct sockaddr *dst,
const struct sockaddr *src);
struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags);
void sockaddr_free(struct sockaddr *sa);
sockaddr_alloc() returns either a sockaddr from the pool belonging
to the specified family, or NULL if the pool is exhausted. The
returned sockaddr has the right size for that family; sa_family
and sa_len fields are initialized to the family and sockaddr
length---e.g., sa_family = AF_INET and sa_len = sizeof(struct
sockaddr_in). sockaddr_free() puts the given sockaddr back into
its family's pool.
sockaddr_dup() and sockaddr_copy() work analogously to strdup()
and strcpy(), respectively. sockaddr_copy() KASSERTs that the
family of the destination and source sockaddrs are alike.
The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is
passed directly to pool_get(9).
2 I added routines for initializing sockaddrs in each address
family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(),
etc. They are fairly self-explanatory.
3 structs route_in6 and route_iso are no more. All protocol families
use struct route. I have changed the route cache, 'struct route',
so that it does not contain storage space for a sockaddr. Instead,
struct route points to a sockaddr coming from the pool the sockaddr
belongs to. I added a new method to struct route, rtcache_setdst(),
for setting the cache destination:
int rtcache_setdst(struct route *, const struct sockaddr *);
rtcache_setdst() returns 0 on success, or ENOMEM if no memory is
available to create the sockaddr storage.
It is now possible for rtcache_getdst() to return NULL if, say,
rtcache_setdst() failed. I check the return value for NULL
everywhere in the kernel.
4 Each routing domain (struct domain) has a list of live route
caches, dom_rtcache. rtflushall(sa_family_t af) looks up the
domain indicated by 'af', walks the domain's list of route caches
and invalidates each one.
instead of rtcache_free(). It is not desirable to clear the cached
destination as well as the route, however, rtcache_free() will
eventually release all resources held by the cache, including the
destination.
Add some additional diagnostic assertions.