- Pull rf_FreePhysDiskAddr() out from under a #ifdef, since we're now
going to use it.
- Add a pda_cleanup_list into the DAG header. Use it in rf_FreeDAG() to
cleanup any PDA's that get allocated but have no "easy" way of being
located and freed when the DAG completes.
- numStripeUnitsAccessed is a per-stripe value, and has a maximum
value equal to the number of colums (thus limited by RF_MAXCOL).
Use this knowledge to set a high-bound on overlappingPDAs, and stuff
it on the stack instead of malloc'ing it all the time! This costs us
a whopping 40 bytes on the stack, but saves a malloc() and a free().
elements from the pools.
Re-work rf_SelectAlgorithm() to get rid of all the 8 malloc's, and to
use the new functions to get/put these 'support structures'. I'm not
overly happy with some of the variable names, but them's the breaks.
In the process of changing things, fix a bug:
- in the case where we can't create a dag, free asmh_b and blockFuncs
too!!
[if you were able to look at the source code related to these changes,
and comprehend what was going on without having your eyes bleed or
getting dizzy, please contact me... I'm sure I'll have more code
which would benefit by you having a look at it before I commit it :) ]
such that we don't actually hold a simplelock while we are doing
a pool_get(), but that we still effectively protecting critical code.
This should fix all of the outstanding LOCKDEBUG warnings related to
rebuilding RAID sets.
Provide rf_AllocDAGNode() and rf_FreeDAGNode() to handle
allocation/freeing.
- Introduce a "nodes" linked list of RF_DagNode_t's into the DAG header.
Initialize nodes in InitHdrNode(). Arrange for nodes cleanup in rf_FreeDAG().
- Add a "list_next" to RF_DagNode_t to keep track of nodes on the
above "nodes" list. (This is distinct from the "next" field of
RF_DagNode_t, which keeps track of the firing order of nodes.)
"list_next" gets used in the cleanup routines, and in traversing
through a set of nodes that belong to a particular set of nodes
(e.g. those belonging to xorNodes for a given DAG).
- use rf_AllocDAGNode() instead of mallocs of variable-sized arrays of
RF_DagNode_t's. Mostly mechanical changes to convert the DAG construction
from "access nodes via an array index" to "access nodes via a 'nextnode'
pointer".
- rework a couple of tricky spots where assumptions about the node order
was being abused.
- performance remains consistent with performance before these changes.
[Thanks to Simon Burge (simonb at you.know.where) for looking over
the mechanical changes to make sure I didn't biff anything.]
rf_PrintUserStats() was mean for the simulator, and doesn't provide
any real info in kernel-space, especially for reconstructs.
Reconstructing actually renders the stats even more useless, since it
resets them all to zero before the reconstruct starts!
- since rf_PrintUserStats() is no longer used, nuke it along with the
routines that feed it. Nothing was using this code, and if we ever
need it again, we know where to find it.
by RAIDframe. Convert all other RAIDframe global pools to use pools
defined within this new structure.
- Introduce rf_pool_init(), used for initializing a single pool in
RAIDframe. Teach each of the configuration routines to use
rf_pool_init().
- Cleanup a few pool-related comments.
- Cleanup revent initialization and #defines.
- Add a missing pool_destroy() for the reconbuffer pool.
(Saves another 1K off of an i386 GENERIC kernel, and makes
stuff a lot more readable)
by RAIDframe. Convert all other RAIDframe global pools to use pools
defined within this new structure.
- Introduce rf_pool_init(), used for initializing a single pool in
RAIDframe. Teach each of the configuration routines to use
rf_pool_init().
- Cleanup a few pool-related comments.
- Cleanup revent initialization and #defines.
- Add a missing pool_destroy() for the reconbuffer pool.
(Saves another 1K off of an i386 GENERIC kernel, and makes
stuff a lot more readable)
rf_AllocBuffer() is available, so use it to get buffer space instead
of the previous RF_Malloc() bits. Saves a few bytes, but more
importantly makes the code much more readable.
- introduce RF_MIN_*'s, as necessary. These will indicate the
low-water mark for pools as well as the pool_prime() value.
- add pool_setlowat() for the critical pools.
- pool_prime() and pool_setlowat() the raidframe_cbufpool.
- re-order some pool_prime()'s and pool_sethiwat()'s for clarity.
This removes 3 more RF_PANIC()'s (but we'll currently still panic if any of these cases occur).
fix up a few printf's.
XXX: still needs more cleanup and testing (and be taught to not panic).
- remove callbackArg2 from RF_CallbackDesc_s -- it is only ever set,
never read.
- now that this is done, all callbacks should only take a single argument,
and we can simplify things further.