exec case, as the emulation already has the ability to intercept that
with the e_proc_exec hook. It is the responsability of the emulation to
take appropriaye action about lwp_emuldata in e_proc_exec.
Patch reviewed by Christos.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
so that a specific emulation has the oportunity to filter out some signals.
if sigfilter returns 0, then no signal is sent by kpsignal2().
There is another place where signals can be generated: trapsignal. Since this
function is already an emulation hook, no call to the sigfilter hook was
introduced in trapsignal.
This is needed to emulate the softsignal feature in COMPAT_DARWIN (signals
sent as Mach exception messages)
rename FPBASE to _FPBASE, so that we avoid polluting the user's
name space when e.g. <sys/ptrace.h> is included. Previously, the
PC symbol in mips/regnum.h would conflict with the declaration of
the external variable by the same name in termcap.h, as discovered
by the ``okheaders'' regression test.
copyin() or copyout().
uvm_useracc() tells us whether the mapping permissions allow access to
the desired part of an address space, and many callers assume that
this is the same as knowing whether an attempt to access that part of
the address space will succeed. however, access to user space can
fail for reasons other than insufficient permission, most notably that
paging in any non-resident data can fail due to i/o errors. most of
the callers of uvm_useracc() make the above incorrect assumption. the
rest are all misguided optimizations, which optimize for the case
where an operation will fail. we'd rather optimize for operations
succeeding, in which case we should just attempt the access and handle
failures due to insufficient permissions the same way we handle i/o
errors. since there appear to be no good uses of uvm_useracc(), we'll
just remove it.
fake sigcode so that trampoline vers checks in sigaction1() will not
return EINVAL. Another fix would be to duplicate code from svr4_sys_sigaction()
to irix_sys_sigaction() and call sigaction1() with vers != 0. We do not
do that because it would duplicate some code.
and make the stack and heap non-executable by default. the changes
fall into two basic catagories:
- pmap and trap-handler changes. these are all MD:
= alpha: we already track per-page execute permission with the (software)
PG_EXEC bit, so just have the trap handler pay attention to it.
= i386: use a new GDT segment for %cs for processes that have no
executable mappings above a certain threshold (currently the
bottom of the stack). track per-page execute permission with
the last unused PTE bit.
= powerpc/ibm4xx: just use the hardware exec bit.
= powerpc/oea: we already track per-page exec bits, but the hardware only
implements non-exec mappings at the segment level. so track the
number of executable mappings in each segment and turn on the no-exec
segment bit iff the count is 0. adjust the trap handler to deal.
= sparc (sun4m): fix our use of the hardware protection bits.
fix the trap handler to recognize text faults.
= sparc64: split the existing unified TSB into data and instruction TSBs,
and only load TTEs into the appropriate TSB(s) for the permissions.
fix the trap handler to check for execute permission.
= not yet implemented: amd64, hppa, sh5
- changes in all the emulations that put a signal trampoline on the stack.
instead, we now put the trampoline into a uvm_aobj and map that into
the process separately.
originally from openbsd, adapted for netbsd by me.
address. We do that through the irix_load_addr function, which is
not IRIX specific at all. If another emulation needs it, it can
easily move to compat_util.c
With this change, IRIX dynamic binaries are able to link and run again
(top down UVM broke them a few weeks ago)
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
merge the two emul_irix structures; the only difference was
setregs function, which can be handled by exec-specific setregs hook
rename setregs_n32() to irix_n32_setregs(), and make it suitable
as the exec-specific setregs hook
make irix_check_exec() a macro now that just single compare
it checks both the alternative/emul tree, and the non-emul tree.
This makes it possible to run chrooted emulated binaries without need
to setup shadow /emul tree within the chroot hierarchy.
Only tested for COMPAT_LINUX, changes to other compat modules were
mechanical.
Fixes kern/19161 by Christian Groessler.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
private to the process within the share group.
There is one bit missing in this implementation: when replicating a change
in a process VM to the other process of the share group, we avoid copying
mappings for private regions in the target process, but we don't prevent
copying private regions from the source process.
it actually fixes a problem:
When /bin/sh gets a SIGSEGV, its signal handler calls brk and the offending
instruction is retried. Usually it gets another SIGSEGV, and things loops
until it pases without the SIGSEGV. This is the normal mode of operation, and
it can be reproduced on IRIX by a 10kB shell script starting by echo /*
However... the signal handler checks for BADVADDR in the saved registers
in struct sigcontext. If it does not find it, it gives up and exit instead
of retrying. Filling the field enables us to carry on normal operation
(which is to get dozens of SIGSEGV) instead of getting a failure at the
first SIGSEGV.