Add MI flags PMAP_WRITE_COMBINE, PMAP_WRITE_BACK, PMAP_NOCACHE_OVR.
Update pmap(9) manpage.
hppa: Remove MD PMAP_NOCACHE flag as it exists as MI flag
mips: Rename MD PMAP_NOCACHE to PGC_NOCACHE.
x86: Implement new MI flags using Page-Attribute Tables.
x86: Implement BUS_SPACE_MAP_PREFETCHABLE.
Patch presented on tech-kern@:
http://mail-index.netbsd.org/tech-kern/2010/06/30/msg008458.html
No comments on this last version.
Forgot to commit this in previous.
- Addresses the issue described in PR/38828.
- Some simplification in threading and sleepq subsystems.
- Eliminates pmap_collect() and, as a side note, allows pmap optimisations.
- Eliminates XS_CTL_DATA_ONSTACK in scsipi code.
- Avoids few scans on LWP list and thus potentially long holds of proc_lock.
- Cuts ~1.5k lines of code. Reduces amd64 kernel size by ~4k.
- Removes __SWAP_BROKEN cases.
Tested on x86, mips, acorn32 (thanks <mpumford>) and partly tested on
acorn26 (thanks to <bjh21>).
Discussed on <tech-kern>, reviewed by <ad>.
which is now the "API" provided by the pmap module. pmap_kernel()
remains as the syntactic sugar.
Bonus cosmetics round: move all the pmap_t pointer typedefs into
uvm_pmap.h.
Thanks to Greg Oster for providing cpu muscle for doing test builds.
http://mail-index.netbsd.org/source-changes/2003/05/08/0068.html
There were some side-effects that I didn't anticipate, and fixing them
is proving to be more difficult than I thought, do just eject for now.
Maybe one day we can look at this again.
Fixes PR kern/21517.
space is advertised to UVM by making virtual_avail and virtual_end
first-class exported variables by UVM. Machine-dependent code is
responsible for initializing them before main() is called. Anything
that steals KVA must adjust these variables accordingly.
This reduces the number of instances of this info from 3 to 1, and
simplifies the pmap(9) interface by removing the pmap_virtual_space()
function call, and removing two arguments from pmap_steal_memory().
This also eliminates some kludges such as having to burn kernel_map
entries on space used by the kernel and stolen KVA.
This also eliminates use of VM_{MIN,MAX}_KERNEL_ADDRESS from MI code,
this giving MD code greater flexibility over the bounds of the managed
kernel virtual address space if a given port's specific platforms can
vary in this regard (this is especially true of the evb* ports).
This will allow improvements to the pmaps so that they can more easily defer expensive operations, eg tlb/cache flush, til the last possible moment.
Currently this is a no-op on most platforms, so they should see no difference.
Reviewed by Jason.
which have pmap_steal_memory(). This is to reduce the API differences
between pmaps that implement pmap_steal_memory() and pmaps which do
not.
Note that pmap_steal_memory() needs to adjust *vstartp and/or
*vendp only if it used addresses within the range provided to UVM
via the pmap_virtual_space() call. I.e. it is not necessary to do
so in any current pmap_steal_memory() implementation.
<vm/vm_extern.h> merged into <uvm/uvm_extern.h>
<vm/vm_page.h> merged into <uvm/uvm_page.h>
<vm/pmap.h> has become <uvm/uvm_pmap.h>
this leaves just <vm/vm.h> in NetBSD.