methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
The IP_MINTTL option may be used on SOCK_STREAM sockets to discard
packets with a TTL lower than the option value. This can be used to
implement the Generalized TTL Security Mechanism (GTSM) according to
RFC 3682.
OK'ed by christos@.
If the IP_RECVTTL option is enabled on a SOCK_DGRAM socket, the
recvmsg(2) call will return the TTL of the received datagram. The
msg_control field in the msghdr structure points to a buffer that
contains a cmsghdr structure followed by the TTL value.
Modeled after FreeBSD implementation.
in_pcbbind().
Okay dyoung@.
Note that the network code is another candidate for major cleanup... also
note that this issue is likely to be present in netinet6 code, too.
tells a socket that it should both add a protocol header to tx'd
datagrams and remove the header from rx'd datagrams:
int onoff = 1, s = socket(...);
setsockopt(s, SOL_SOCKET, SO_NOHEADER, &onoff);
2) Add an implementation of (SOL_SOCKET, SO_NOHEADER) for raw IPv4
sockets.
3) Reorganize the protocols' pr_ctloutput implementations a bit.
Consistently return ENOPROTOOPT when an option is unsupported,
and EINVAL if a supported option's arguments are incorrect.
Reorganize the flow of code so that it's more clear how/when
options are passed down the stack until they are handled.
Shorten some pr_ctloutput staircases for readability.
4) Extract common mbuf code into subroutines, add new sockaddr
methods, and introduce a new subroutine, fsocreate(), for reuse
later; use it first in sys_socket():
struct mbuf *m_getsombuf(struct socket *so)
Create an mbuf and make its owner the socket `so'.
struct mbuf *m_intopt(struct socket *so, int val)
Create an mbuf, make its owner the socket `so', put the
int `val' into it, and set its length to sizeof(int).
int fsocreate(..., int *fd)
Create a socket, a la socreate(9), put the socket into the
given LWP's descriptor table, return the descriptor at `fd'
on success.
void *sockaddr_addr(struct sockaddr *sa, socklen_t *slenp)
const void *sockaddr_const_addr(const struct sockaddr *sa, socklen_t *slenp)
Extract a pointer to the address part of a sockaddr. Write
the length of the address part at `slenp', if `slenp' is
not NULL.
socklen_t sockaddr_getlen(const struct sockaddr *sa)
Return the length of a sockaddr. This just evaluates to
sa->sa_len. I only add this for consistency with code that
appears in a portable userland library that I am going to
import.
const struct sockaddr *sockaddr_any(const struct sockaddr *sa)
Return the "don't care" sockaddr in the same family as
`sa'. This is the address a client should sobind(9) if it
does not care the source address and, if applicable, the
port et cetera that it uses.
const void *sockaddr_anyaddr(const struct sockaddr *sa, socklen_t *slenp)
Return the "don't care" sockaddr in the same family as
`sa'. This is the address a client should sobind(9) if it
does not care the source address and, if applicable, the
port et cetera that it uses.
pass it to in_pcbbind() so that can allocate a low numbered port
if setsockopt() has been used to set IP_PORTRANGE to IP_PORTRANGE_LOW.
While there, fail in_pcbconnect() if the in_pcbbind() fails - rather
than sending the request out from a port of zero.
This has been largely broken since the socket option was added in 1998.
close sockets on address changes, which was deemed to be a bad idea and was
summarily removed, so there is no point in wasting effort on maintaining it
any more.
manner as the ifaddr hash table. By doing this, the mkludge code can go
away. At the same time, keep track of what pcbs are using what ifaddr and
when an address is deleted from an interface, notify/abort all sockets
that have that address as a source. Switch IGMP and multicasts to use pools
for allocation. Fix a number of potential problems in the igmp code where
allocation failures could cause a trap/panic.
- interop issues in ipcomp is fixed
- padding type (after ESP) is configurable
- key database memory management (need more fixes)
- policy specification is revisited
XXX m->m_pkthdr.rcvif is still overloaded - hope to fix it soon
(Sorry for a big commit, I can't separate this into several pieces...)
Pls check sys/netinet6/TODO and sys/netinet6/IMPLEMENTATION for details.
- sys/kern: do not assume single mbuf, accept chained mbuf on passing
data from userland to kernel (or other way round).
- "midway" ATM card: ATM PVC pseudo device support, like those done in ALTQ
package (ftp://ftp.csl.sony.co.jp/pub/kjc/).
- sys/netinet/tcp*: IPv4/v6 dual stack tcp support.
- sys/netinet/{ip6,icmp6}.h, sys/net/pfkeyv2.h: IETF document assumes those
file to be there so we patch it up.
- sys/netinet: IPsec additions are here and there.
- sys/netinet6/*: most of IPv6 code sits here.
- sys/netkey: IPsec key management code
- dev/pci/pcidevs: regen
In my understanding no code here is subject to export control so it
should be safe.
of a lookup_wildcard arg; simplifies the logic a bit.
* when assigning ephemeral ports in in_pcbbind(), always call
in_pcblookup_port() with lookup_wildcard=1, so that ephemeral port
allocation on sockets with SO_REUSEADDR set won't potentially bind to a
port in use by something else (principle of least surprise).
* IP_PORTRANGE socket option, which controls how the ephemeral ports
are allocated. it takes the following settings:
IP_PORTRANGE_DEFAULT use anonportmin (49152) -> anonportmax (65535)
IP_PORTRANGE_HIGH as IP_PORTRANGE_DEFAULT (retained for FreeBSD
compat reasons, where these are separate)
IP_PORTRANGE_LOW use 600 -> 1023. only works if uid==0.
* in_pcb flag INP_ANONPORT. set if port was allocated ephmerally
interface using a sockaddr_dl in a control mbuf.
Implement SO_TIMESTAMP for IP datagrams.
Move packet information option processing into a generic function
so that they work with multicast UDP and raw IP as well as unicast UDP.
Contributed by Bill Fenner <fenner@parc.xerox.com>.
easily, and so that the original (insque/remque) logic can be effectively
mimiced. (This fixes a bug in the previous set of list changes.)
also (since terminator is no longer null) reinstate uninitted list checks,
but mark them XXX.
* Convert several data structures to use queue.h.
* Split in_pcbnotify() into two parts; one for notifying a specific PCB, and
one for notifying all PCBs for a particular foreign address.