- don't use managed mappings/backing objects for wired memory allocations.
save some resources like pv_entry. also fix (most of) PR/27030.
- simplify kernel memory management API.
- simplify pmap bootstrap of some ports.
- some related cleanups.
- decrement uvmexp.anonpages as it's no longer an anon page.
- null out anon->u.an_page as the anon no longer own the page.
uvm_anfree: add related assertions.
insert the replacement page into the same position
as the original page on the object memq so that
genfs_putpages (and lfs) won't be confused.
noted by Stephan Uphoff (PR/24328)
http://mail-index.netbsd.org/source-changes/2003/05/08/0068.html
There were some side-effects that I didn't anticipate, and fixing them
is proving to be more difficult than I thought, do just eject for now.
Maybe one day we can look at this again.
Fixes PR kern/21517.
space is advertised to UVM by making virtual_avail and virtual_end
first-class exported variables by UVM. Machine-dependent code is
responsible for initializing them before main() is called. Anything
that steals KVA must adjust these variables accordingly.
This reduces the number of instances of this info from 3 to 1, and
simplifies the pmap(9) interface by removing the pmap_virtual_space()
function call, and removing two arguments from pmap_steal_memory().
This also eliminates some kludges such as having to burn kernel_map
entries on space used by the kernel and stolen KVA.
This also eliminates use of VM_{MIN,MAX}_KERNEL_ADDRESS from MI code,
this giving MD code greater flexibility over the bounds of the managed
kernel virtual address space if a given port's specific platforms can
vary in this regard (this is especially true of the evb* ports).
* Remove DEFAULT_PAGE_SIZE. We don't use PAGE_SIZE the way Mach did.
* In uvm_setpagesize(), if we are called with uvmexp.pagesize == 0,
then assert that PAGE_SIZE != 0 (i.e. a constant), and set uvmexp.pagesize
accordingly.
* Provide defaults for MIN_PAGE_SIZE and MAX_PAGE_SIZE if not defined
by <machine/vmparam.h>. If PAGE_SIZE is not a constant, MIN_PAGE_SIZE
and MAX_PAGE_SIZE must be provided.
* If MIN_PAGE_SIZE and MAX_PAGE_SIZE are not equal (i.e. PAGE_SIZE may
not be a constant in all configurations), then ensure that PAGE_SIZE
and friends expand to variable references for LKMs.
(there are still some details to work out) but expect that to go
away soon. To support these basic changes (creation of lfs_putpages,
lfs_gop_write, mods to lfs_balloc) several other changes were made, to
wit:
* Create a writer daemon kernel thread whose purpose is to handle page
writes for the pagedaemon, but which also takes over some of the
functions of lfs_check(). This thread is started the first time an
LFS is mounted.
* Add a "flags" parameter to GOP_SIZE. Current values are
GOP_SIZE_READ, meaning that the call should return the size of the
in-core version of the file, and GOP_SIZE_WRITE, meaning that it
should return the on-disk size. One of GOP_SIZE_READ or
GOP_SIZE_WRITE must be specified.
* Instead of using malloc(...M_WAITOK) for everything, reserve enough
resources to get by and use malloc(...M_NOWAIT), using the reserves if
necessary. Use the pool subsystem for structures small enough that
this is feasible. This also obsoletes LFS_THROTTLE.
And a few that are not strictly necessary:
* Moves the LFS inode extensions off onto a separately allocated
structure; getting closer to LFS as an LKM. "Welcome to 1.6O."
* Unified GOP_ALLOC between FFS and LFS.
* Update LFS copyright headers to correct values.
* Actually cast to unsigned in lfs_shellsort, like the comment says.
* Keep track of which segments were empty before the previous
checkpoint; any segments that pass two checkpoints both dirty and
empty can be summarily cleaned. Do this. Right now lfs_segclean
still works, but this should be turned into an effectless
compatibility syscall.
malloc types into a structure, a pointer to which is passed around,
instead of an int constant. Allow the limit to be adjusted when the
malloc type is defined, or with a function call, as suggested by
Jonathan Stone.
request may contain PGO_DONTCARE and nfs_getpages may unbusy them on error.
Fix is provided in PR#20028 by YAMAMOTO Takashi. (and same one is approved
by chuq while ago in private mail). It was my fault to forget to commit.
Makoto Fujiwara <makoto@ki.nu> and Manuel Bouyer <bouyer@netbsd.org>.
Help from Allen Briggs, Jason Thorpe, and Matt Thomas.
We need to call cpu_cache_probe() early in boot (machdep.c).
Add 603 info for completeness, and use NBPG not PAGESIZE, as the
latter relies on uvm being setup (cpu_subr.c).
Let uvm_page_recolor() be called before uvm has been set up; just
note the page coloring value (uvm_page.c).
uobject and uanon pointers rather than at the PQ_ANON flag to determine
which lock to hold, since PQ_ANON can be clear even when the anon's lock
is the one which we should hold (if the page was loaned from an object
and then freed by the object).
will be allocated for the respective usage types when there is contention
for memory.
replace "vnode" and "vtext" with "file" and "exec" in uvmexp field names
and sysctl names.
- fix the loaned case in uvm_pagefree().
- redo uvmexp.swpgonly accounting to work with page loaning.
add an assertion before each place we adjust uvmexp.swpgonly.
- fix uvm_km_pgremove() to always free any swap space associated with
the range being removed.
- get rid of UVM_LOAN_WIRED flag. instead, we just make sure that
pages loaned to the kernel are never on the page queues.
this allows us to assert that pages are not loaned and wired
at the same time.
- add yet more assertions.
- remove special treatment of pager_map mappings in pmaps. this is
required now, since I've removed the globals that expose the address range.
pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's
no longer any need to special-case it.
- eliminate struct uvm_vnode by moving its fields into struct vnode.
- rewrite the pageout path. the pager is now responsible for handling the
high-level requests instead of only getting control after a bunch of work
has already been done on its behalf. this will allow us to UBCify LFS,
which needs tighter control over its pages than other filesystems do.
writing a page to disk no longer requires making it read-only, which
allows us to write wired pages without causing all kinds of havoc.
- use a new PG_PAGEOUT flag to indicate that a page should be freed
on behalf of the pagedaemon when it's unlocked. this flag is very similar
to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the
pageout fails due to eg. an indirect-block buffer being locked.
this allows us to remove the "version" field from struct vm_page,
and together with shrinking "loan_count" from 32 bits to 16,
struct vm_page is now 4 bytes smaller.
- no longer use PG_RELEASED for swap-backed pages. if the page is busy
because it's being paged out, we can't release the swap slot to be
reallocated until that write is complete, but unlike with vnodes we
don't keep a count of in-progress writes so there's no good way to
know when the write is done. instead, when we need to free a busy
swap-backed page, just sleep until we can get it busy ourselves.
- implement a fast-path for extending writes which allows us to avoid
zeroing new pages. this substantially reduces cpu usage.
- encapsulate the data used by the genfs code in a struct genfs_node,
which must be the first element of the filesystem-specific vnode data
for filesystems which use genfs_{get,put}pages().
- eliminate many of the UVM pagerops, since they aren't needed anymore
now that the pager "put" operation is a higher-level operation.
- enhance the genfs code to allow NFS to use the genfs_{get,put}pages
instead of a modified copy.
- clean up struct vnode by removing all the fields that used to be used by
the vfs_cluster.c code (which we don't use anymore with UBC).
- remove kmem_object and mb_object since they were useless.
instead of allocating pages to these objects, we now just allocate
pages with no object. such pages are mapped in the kernel until they
are freed, so we can use the mapping to find the page to free it.
this allows us to remove splvm() protection in several places.
The sum of all these changes improves write throughput on my
decstation 5000/200 to within 1% of the rate of NetBSD 1.5
and reduces the elapsed time for "make release" of a NetBSD 1.5
source tree on my 128MB pc to 10% less than a 1.5 kernel took.
This will allow improvements to the pmaps so that they can more easily defer expensive operations, eg tlb/cache flush, til the last possible moment.
Currently this is a no-op on most platforms, so they should see no difference.
Reviewed by Jason.