each of the basic types (anonymous data, executable image, cached files)
and prevent the pagedaemon from reusing a given page if that would reduce
the count of that type of page below a sysctl-setable minimum threshold.
the thresholds are controlled via three new sysctl tunables:
vm.anonmin, vm.vnodemin, and vm.vtextmin. these tunables are the
percentages of pageable memory reserved for each usage, and we do not allow
the sum of the minimums to be more than 95% so that there's always some
memory that can be reused.
`struct vmspace' has a new field `vm_minsaddr' which is the user TOS.
PS_STRINGS is deprecated in favor of curproc->p_pstr which is derived
from `vm_minsaddr'.
Bump the kernel version number.
that the page being zero'd was not completed and that page zeroing
should be aborted. This may be used by machine-dependent code doing
slow page access to reduce the latency of running a process that has
become runnable while in the middle of doing a slow page zero.
routine. Works similarly fto pmap_prefer(), but allows callers
to specify a minimum power-of-two alignment of the region.
How we ever got along without this for so long is beyond me.
<vm/vm_extern.h> merged into <uvm/uvm_extern.h>
<vm/vm_page.h> merged into <uvm/uvm_page.h>
<vm/pmap.h> has become <uvm/uvm_pmap.h>
this leaves just <vm/vm.h> in NetBSD.
<vm/pglist.h> -> <uvm/uvm_pglist.h>
<vm/vm_inherit.h> -> <uvm/uvm_inherit.h>
<vm/vm_kern.h> -> into <uvm/uvm_extern.h>
<vm/vm_object.h> -> nothing
<vm/vm_pager.h> -> into <uvm/uvm_pager.h>
also includes a bunch of <vm/vm_page.h> include removals (due to redudancy
with <vm/vm.h>), and a scattering of other similar headers.
doing a cpu_set_kpc(), just pass the entry point and argument all
the way down the fork path starting with fork1(). In order to
avoid special-casing the normal fork in every cpu_fork(), MI code
passes down child_return() and the child process pointer explicitly.
This fixes a race condition on multiprocessor systems; a CPU could
grab the newly created processes (which has been placed on a run queue)
before cpu_set_kpc() would be performed.
- Make page free lists have two actual queues: known-zero pages and
pages with unknown contents.
- Implement uvm_pageidlezero(). This function attempts to zero up to
the target number of pages until the target has been reached (currently
target is `all free pages') or until whichqs becomes non-zero (indicating
that a process is ready to run).
- Define a new hook for the pmap module for pre-zero'ing pages. This is
used to zero the pages using uncached access. This allows us to zero
as many pages as we want without polluting the cache.
In order to use this feature, each platform must add the appropropriate
glue in their idle loop.
Add a new type voff_t (defined as a synonym for off_t) to describe offsets
into uvm objects, and update the appropriate interfaces to use it, the
most visible effect being the ability to mmap() file offsets beyond
the range of a vaddr_t.
Originally by Chuck Silvers; blame me for problems caused by merging this
into non-UBC.
amount of physical memory, divide it by 4, and then allow machine
dependent code to place upper and lower bounds on the size. Export
the computed value to userspace via the new "vm.nkmempages" sysctl.
NKMEMCLUSTERS is now deprecated and will generate an error if you
attempt to use it. The new option, should you choose to use it,
is called NKMEMPAGES, and two new options NKMEMPAGES_MIN and
NKMEMPAGES_MAX allow the user to configure the bounds in the kernel
config file.
of some functions. Use these flags in uvm_map_pageable() to determine
if the map is locked on entry (replaces an already present boolean_t
argument `islocked'), and if the function should return with the map
still locked.
which use uvm_vslock() should now test the return value. If it's not
KERN_SUCCESS, wiring the pages failed, so the operation which is using
uvm_vslock() should error out.
XXX We currently just EFAULT a failed uvm_vslock(). We may want to do
more about translating error codes in the future.
* Provide POSIX 1003.1b mlockall(2) and munlockall(2) system calls.
MCL_CURRENT is presently implemented. MCL_FUTURE is not fully
implemented. Also, the same one-unlock-for-every-lock caveat
currently applies here as it does to mlock(2). This will be
addressed in a future commit.
* Provide the mincore(2) system call, with the same semantics as
Solaris.
* Clean up the error recovery in uvm_map_pageable().
* Fix a bug where a process would hang if attempting to mlock a
zero-fill region where none of the pages in that region are resident.
[ This fix has been submitted for inclusion in 1.4.1 ]
has PAGEABLE and INTRSAFE flags. PAGEABLE now really means "pageable",
not "allocate vm_map_entry's from non-static pool", so update all map
creations to reflect that. INTRSAFE maps are maps that are used in
interrupt context (e.g. kmem_map, mb_map), and thus use the static
map entry pool (XXX as does kernel_map, for now). This will eventually
change now these maps are locked, as well.
the child inherits the stack pointer from the parent (traditional
behavior). Like the signal stack, the stack area is secified as
a low address and a size; machine-dependent code accounts for stack
direction.
This is required for clone(2).
define a flag UVM_PGA_USERESERVE to allow non-kernel object
allocations to use pages from the reserve.
use the new flag for allocations in pmap modules.
default free list, and 0 - N additional free list, in order of descending
priority.
A new page allocation function, uvm_pagealloc_strat(), has been added,
providing three page allocation strategies:
- normal: high -> low priority free list walk, taking the
page off the first free list that has one.
- only: attempt to allocate a page only from the specified free
list, failing if that free list has none available.
- fallback: if `only' fails, fall back on `normal'.
uvm_pagealloc(...) is provided for normal use (and is a synonym for
uvm_pagealloc_strat(..., UVM_PGA_STRAT_NORMAL, 0); the free list argument
is ignored for the `normal' case).
uvm_page_physload() now specified which free list the pages will be
loaded onto. This means that some platforms which have multiple physical
memory segments may define additional vm_physsegs if they wish to break
individual physical segments into differing priorities.
Machine-dependent code must define _at least_ the following constants
in <machine/vmparam.h>:
VM_NFREELIST: the number of free lists the system will have
VM_FREELIST_DEFAULT: the default freelist (should always be 0,
but is defined in machdep code so that it's with all of the
other free list-related constants).
Additional free list names may be defined by machine-dependent code, but
they will only be used by machine-dependent code (e.g. for loading the
vm_physsegs).