VOP_STRATEGY(bp) is replaced by one of two new functions:
- VOP_STRATEGY(vp, bp) Call the strategy routine of vp for bp.
- DEV_STRATEGY(bp) Call the d_strategy routine of bp->b_dev for bp.
DEV_STRATEGY(bp) is used only for block-to-block device situations.
suspending.
Move vfs_write_suspend() and vfs_write_resume() from kern/vfs_vnops.c
to kern/vfs_subr.c.
Change vnode write gating in ufs/ffs/ffs_softdep.c (from FreeBSD).
When vnodes are throttled in softdep_trackbufs() check for
file system suspension every 10 msecs to avoid a deadlock.
it can be used to clear the work queue.
Cleanup ffs_sync() which did not synchronously wait when MNT_WAIT
was specified. Clear the work queue when MNT_WAIT is specified.
Result is a clean on-disk file system after ffs_sync(.., MNT_WAIT, ..)
From FreeBSD.
add compatibility for filesystems created before FFSv2 integration
these patches are from pr port-macppc/23926 and should also fix
problems discussed in pr kern/21404 and pr kern/21283
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
ffs_isblock:
check if a block is available
returns true if all the correponding bits in the free map are 1
returns false if any corresponding bit in the free map is 0
ffs_isfreeblock:
check if a block is completely allocated
returns true if all the corresponding bits in the free map are 0
returns false if any corresponding bit in the free map is 1
previous error conditions.
If "(flags & (V_WAIT|V_PCATCH)) == V_WAIT" the return value is always zero.
Ignore the return value in these cases.
From Darrin B. Jewell.
* Rename "config.h" to "nbtool_config.h" and
HAVE_CONFIG_H to HAVE_NBTOOL_CONFIG_H.
This makes in more obvious in the source when we're using
tools/compat/config.h versus "standard autoconf" config.h
* Consistently move the inclusion of nbtool_config.h to before
<sys/cdefs.h> so that the former can provide __RCSID() (et al),
and there's no need to protect those macros any more.
These changes should make it easier to "tool-ify" a program by adding:
#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif
to the top of the source files (for the general case).
ffs_full_fsync(); while it is supposed to hint that the update of _file_
metadata (as in timestamps et al.) may be omitted it doesn't mean the
same for _filesystem_ metadata.
file system.
The function vfs_write_suspend stops all new write operations to a file
system, allows any file system modifying system calls already in progress
to complete, then sync's the file system to disk and returns. The
function vfs_write_resume allows the suspended write operations to
complete.
From FreeBSD with slight modifications.
Approved by: Frank van der Linden <fvdl@netbsd.org>
mv MNT_GONE, MNT_UNMOUNT and MNT_WANTRDWR to this field
additonally add mnt_writeopcountupper and mnt_writeopcountlower fields
in preparation for pending write suspension support work
bump kernel version to 1.6ZD
This fixes a bug introduced in revision 1.120 of ffs_vfsops dated 2003/09/13
which results in fs_flags having a value of 0x7fffff00 when a superblock
is updated to use the new layout.
Discussed in http://mail-index.netbsd.org/tech-kern/2003/09/28/0003.html
when an old ffs filesytem is first mounted (as a result, df reports disk
full on old ffs filesystem or mfs created by old binary). Problem first
noticed by onoe san.
http://mail-index.netbsd.org/tech-kern/2003/09/06/0001.htmlhttp://mail-index.netbsd.org/tech-kern/2003/09/06/0006.html
to avoid compat problems with old ffsv1 by reuse of the old FS_SWAPPED
value for FS_FLAGS_UPDATED, and use of new, larger fields:
- Don't use FS_FLAGS_UPDATED to see if we need to update new fields from
old fields in ffsv1 case.
- when writing back the superblock, copy back the flags to the old location
if only old flags are set (FS_FLAGS_UPDATED won't be set in this case)
in ffsv1 case.