Define an attribute for each crypto algorithm, and use that attribute
to select the files that implement the algorithm.
* Give the "wlan" attribute a dependency on the "arc4" attribute.
* Give the "cgd" pseudo-device the "des", "blowfish", "cast128", and
"rijndael" attributes.
* Use the new attribute-as-option-dependencies feature of config(8) to
give the IPSEC_ESP option dependencies on the "des", "blowfish", "cast128",
and "rijndael" attributes.
netinet/files.ipfilter, etinet/files.netinet, netinet6/files.netinet6,
and netinet6/files.netipsec.
XXX There are still a few stragglers in conf/files, which are entangled
with other network protocols.
"scsi_core". Make all the files previously selected by the "scsi"
attribute selected by the "scsi_core" attribute. Give the "scsibus"
device the "scsi_core" attribute.
- Split if_fmv.c into MI/MD part and add ISA-PnP attachment for FMV-183.
(XXX FMV-184 is not tested. It would require extra media-select functions..)
- Fix probe functions of fmv_isa so that FMV-181A/182A will also match.
Fixes port-i386/9476.
- Eliminate wi_hostap.c since most of the code are duplicated with
net/if_ieee80211subr.c
- Station for Infrastructure network and IBSS also use service functions
as much as possible to be consistent with other wireless drivers.
Now WEP works for station/ibss/hostap.
Setup sequence obtained from Krups OFW with some CyberPro-specific
magic from Linux driver. The driver still has a lot of hardcoded
stuff, but it is useful enough to bring up wscons on netwinder.
XXX: Proper console attachment needs to be written (the driver was
originally developed on sparc, where our approach to attaching console
is totally different).
Caveat emptor!
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
from if_ieee80211subr.c, since "wi" devices implement the 802.11
protocol in firmware (for the most part). So, remove the wlan attribute,
which saves a fair bit of kernel text.
counters. These counters do not exist on all CPUs, but where they
do exist, can be used for counting events such as dcache misses that
would otherwise be difficult or impossible to instrument by code
inspection or hardware simulation.
pmc(9) is meant to be a general interface. Initially, the Intel XScale
counters are the only ones supported.
compile directory is not under /usr/src/sys (i.e. when 'S' is not
'../../../..'). Pointed out by Robert Elz in PR 17384.
Thanks again to Andrew Brown for figuring out how to rip .depend apart.
the block comment at the top of the file:
This module provides kernel support for testing network
throughput from the perspective of the kernel. It is
similar in spirit to the classic ttcp network benchmark
program, the main difference being that with kttcp, the
kernel is the source and sink of the data.
Testing like this is useful for a few reasons:
1. This allows us to know what kind of performance we can
expect from network applications that run in the kernel
space, such as the NFS server or the NFS client. These
applications don't have to move the data to/from userspace,
and so benchmark programs which run in userspace don't
give us an accurate model.
2. Since data received is just thrown away, the receiver
is very fast. This can provide better exercise for the
sender at the other end.
3. Since the NetBSD kernel currently uses a run-to-completion
scheduling model, kttcp provides a benchmark model where
preemption of the benchmark program is not an issue.
There is a companion "kttcp" user program which uses the kttcp
pseudo-device.
Largely written by Frank van der Linden, with some modifications
from me.
found on many (all?) of PCI-based ATI graphics cards. It is fully optional
and can be enabled by adding `options VGA_CONSOLE_ATI_BROKEN_FONTSEL'
to config file.
- Temporarily remove `quirk' mechanism. Similar code already exists
in pci_quirks.c.
Makefiles. The main feature added by these targets is that they cover
ONLY the source files used for a given kernel and no other. Thus when
examining MD routines provided by all machines, you will see only
those applicable for your kernel.
behavior changes:
- two iocts used by ndp(8) are now obsolete (backward compat provided).
use sysctl path instead.
- lo0 does not get ::1 automatically. it will get ::1 when lo0 comes up.
by default, and can be enabled by adding the SOSEND_LOAN option to your
kernel config. The SOSEND_COUNTERS option can be used to provide some
instrumentation.
Use of this option, combined with an application that does large enough
writes, gets us zero-copy on the TCP and UDP transmit path.
taken from OpenBSD. Test hardware kindly provided by Intel. This still needs
management bits, and doesn't support older controllers, but that shouldn't
be hard to fix.
yet.
If is restricted to SIOP which implement the load/store instruction, and
has 10 scratch registers (basically, 825 and newer, possibly 770).
It implements a different interface between host and script, using a real
ring for command starts, and improved support for reconnect which will allow
256 tag per device. It uses interrupt on the fly to signal complete command,
which allows several commands to be serviced per interrupt and doesn't require
the script to stop to signal command completion.
* Pull in dev/mii/files.mii from conf/files, rather than playing
the magic "files include order" dance in N machine-dependent
configuration definitions.
B-channel and D-channel drivers separately) split the Fritz!PCI card
driver out of the isic driver.
The new device is called "ifpci" and uses the same D-channel driver as the
isic devices, but has it's own B-channel driver.
and move them in their proper places.
Move the BRI registry from layer 2 (duh!) to layer 4, so active cards
(which don't have layer 3 or layer 2 in their driver). Remove all remaining
hard coded controller and driver types. Remove any arbitrary hard coded
limits, at least those that show up in the internal API.
This fixes PR 15950.
become ippp (ISDN ppp) and irip (ISDN raw IP). The character device now
are called: /dev/isdn (isdnd <-> kernel communication), /dev/isdnctl (dialing
and other control), /dev/isdntrc* (tracing), /dev/isdnbchan* (raw B channel
access, i.e. for user land PPP) and /dev/isdntel* (telephone devices, i.e.
for answering machines).
using one word as both attribute and device doesn't work well,
radio.c is pulled in even with no such device in the configuration,
and the kernel doesn't link due to missing "radio_cd".
So call the attribute "radiodev" to avoid confusion.
podulebus Ethernet cards. This replaces the NE2000 memory-access routines
with ones that don't try to transfer more than 255 bytes at a time.
This code should perhaps be merged into ne2000.c, but presumably most NE2000
clones won't need it.
ports. This includes cleaning out DBG, cleaning up the `clean'
target, and tweaking the warnings flags (cesfic, amigappc, and the arm
ports are a little less warning resistant).
Oh, and let's `install' the kernel into ${DESTDIR} if someone says
`make install'. We have to think about cross-compilers here.
not support a value (e.g., it's to be used as "options FOO" instead of
"options FOO=xxx"). options that take a value were converted to
defparam recently.
- minor whitespace & formatting cleanups
that empty values for TEXTADDR and DATAADDR (and ENTRYPOINT) will not
screw things up. Add support for SYSTEM_LD_TAIL_EXTRA which some
ports (not yet converted) are using. Add support for GENASSYM_EXTRAS
which has just been added to (some of) the arm ports.
as config(8) will warn for value-less defparam options
- minor whitespace/formatting cleanup
- consolidate opt_tcp_recvspace.h and opt_tcp_sendspace.h into opt_tcp_space.h
- replace opt_kgdb_machdep.h with opt_kgdb.h
- defparam opt_kgdb.h:
KGDB_DEV KGDB_DEVNAME KGDB_DEVADDR KGDB_DEVRATE KGDB_DEVMODE
- move from opt_ddbparam.h to opt_ddb.h:
DDB_FROMCONSOLE DDB_ONPANIC DDB_HISTORY_SIZE DDB_BREAK_CHAR SYMTAB_SPACE
- replace KGDBDEV with KGDB_DEV
- replace KGDBADDR with KGDB_DEVADDR
- replace KGDBMODE with KGDB_DEVMODE
- replace KGDBRATE with KGDB_DEVRATE
- use `9600' instead of `0x2580' for 9600 baud rate
- use correct quotes for options KGDB_DEVNAME="\"com\""
- use correct quotes for options KGDB_DEV="17*256+0"
- remove unnecessary dependancy on Makefile for kgdb_stub.o
- minor whitespace cleanup
build features (such as ross's DEBUGLIST) can easily be applied to all
ports. This should reduce the complexity of each port's kernel
Makefile considerably. Line counts:
227 arch/i386/conf/Makefile.i386.orig
98 arch/i386/conf/Makefile.i386
227 arch/alpha/conf/Makefile.alpha.orig
99 arch/alpha/conf/Makefile.alpha
219 arch/sparc/conf/Makefile.sparc.orig
102 arch/sparc/conf/Makefile.sparc
215 arch/vax/conf/Makefile.vax.orig
102 arch/vax/conf/Makefile.vax
253 conf/Makefile.kern.inc
Roll i386, alpha, sparc, and vax over to the new build machinery.
8 port chip. this is used in several sbus (sparc) serial boards, as
well as an 8 port isa card from riscom. sio16 (sbus) frontend coming
shortly.
this is heavily based on the com and zs drivers.
if_ieee80211subr.c, which can be shared between any IEEE 802.11
drivers.
However, most of current working IEEE 802.11b wireless LAN cards
have rich firmware and we cannot have a control to management frames
for such cards.
IBSS creation is now supported for the awi driver.
- remove special treatment of pager_map mappings in pmaps. this is
required now, since I've removed the globals that expose the address range.
pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's
no longer any need to special-case it.
- eliminate struct uvm_vnode by moving its fields into struct vnode.
- rewrite the pageout path. the pager is now responsible for handling the
high-level requests instead of only getting control after a bunch of work
has already been done on its behalf. this will allow us to UBCify LFS,
which needs tighter control over its pages than other filesystems do.
writing a page to disk no longer requires making it read-only, which
allows us to write wired pages without causing all kinds of havoc.
- use a new PG_PAGEOUT flag to indicate that a page should be freed
on behalf of the pagedaemon when it's unlocked. this flag is very similar
to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the
pageout fails due to eg. an indirect-block buffer being locked.
this allows us to remove the "version" field from struct vm_page,
and together with shrinking "loan_count" from 32 bits to 16,
struct vm_page is now 4 bytes smaller.
- no longer use PG_RELEASED for swap-backed pages. if the page is busy
because it's being paged out, we can't release the swap slot to be
reallocated until that write is complete, but unlike with vnodes we
don't keep a count of in-progress writes so there's no good way to
know when the write is done. instead, when we need to free a busy
swap-backed page, just sleep until we can get it busy ourselves.
- implement a fast-path for extending writes which allows us to avoid
zeroing new pages. this substantially reduces cpu usage.
- encapsulate the data used by the genfs code in a struct genfs_node,
which must be the first element of the filesystem-specific vnode data
for filesystems which use genfs_{get,put}pages().
- eliminate many of the UVM pagerops, since they aren't needed anymore
now that the pager "put" operation is a higher-level operation.
- enhance the genfs code to allow NFS to use the genfs_{get,put}pages
instead of a modified copy.
- clean up struct vnode by removing all the fields that used to be used by
the vfs_cluster.c code (which we don't use anymore with UBC).
- remove kmem_object and mb_object since they were useless.
instead of allocating pages to these objects, we now just allocate
pages with no object. such pages are mapped in the kernel until they
are freed, so we can use the mapping to find the page to free it.
this allows us to remove splvm() protection in several places.
The sum of all these changes improves write throughput on my
decstation 5000/200 to within 1% of the rate of NetBSD 1.5
and reduces the elapsed time for "make release" of a NetBSD 1.5
source tree on my 128MB pc to 10% less than a 1.5 kernel took.
protocols, and lacking any timeouts, but it basically works, doing four-way
handshakes in both directions and incoming Machine Peek operations.
Oh, and Econet is Acorn's ancient, proprietary 500kbit/s networking
technology.
This also involved updating the in-kernel DES functions to correspond
to the versions in our in-tree OpenSSL, because the des_SPtrans table
has changed; the asm code will not work with the old permutation table!
C and i386 asm code for the DES, 3DES, and Blowfish CBC modes is also
included; it is not currently built as the ESP processing in esp_core.c
splits the CBC operation and the cipher transform apart. Hopefully that
will be fixed as there is a substantial performance improvement to be had
from doing so. It will remain necessary to use the C version of the
Blowfish CBC function on some i386 machines, however, as the asm version
uses bswapl, which ony 486 and later processors have. The DES CBC code
doesn't have this problem.
Finally, change esp_core.c to use the ecb3_encrypt function instead of
calling ecb_encrypt three times; this improves performance a bit, in
particular in the asm case.
guard pages. Can only debug one malloc type at a time, and nothing
larger than 1 page. But can be useful for debugging certain types
of "data modified on freelist" type problems.
Modified from code in OpenBSD.
used to make ELF binaries unmatched by any signature check to be run under
NetBSD 'emulation'. This causes problems like kern/12253.
The old behaviour is available with option EXEC_ELF_CATCHALL.
for FreeBSD project. Besides huge speed boost compared with socketpair-based
pipes, this implementation also uses pagable kernel memory instead of mbufs.
Significant differences to FreeBSD version:
* uses uvm_loan() facility for direct write
* async/SIGIO handling correct also for sync writer, async reader
* limits settable via sysctl, amountpipekva and nbigpipes available via sysctl
* pipes are unidirectional - this is enforced on file descriptor level
for now only, the code would be updated to take advantage of it
eventually
* uses lockmgr(9)-based locks instead of home brew variant
* scatter-gather write is handled correctly for direct write case, data
is transferred by PIPE_DIRECT_CHUNK bytes maximum, to avoid running out of kva
All FreeBSD/NetBSD specific code is within appropriate #ifdef, in preparation
to feed changes back to FreeBSD tree.
This pipe implementation is optional for now, add 'options NEW_PIPE'
to your kernel config to use it.
by Eduardo Horvath and Simon Burge of Wasabi Systems.
IBM 4xx series CPU features:
- New pmap and revised trap handler.
- Support on-chip timers, PCI controller, UARTs
- Framework for on-chip ethernet and watchdog timer.
General PowerPC features:
- Add in-kernel PPC floating point emulation
- New in{,4}_cksum that is between 1.5 and 5 times faster than the
old version depending on CPU type.
General changes:
- Kernel support for generic dbsym-style symbols.
network interfaces. This works by pre-computing the pseudo-header
checksum and caching it, delaying the actual checksum to ip_output()
if the hardware cannot perform the sum for us. In-bound checksums
can either be fully-checked by hardware, or summed up for final
verification by software. This method was modeled after how this
is done in FreeBSD, although the code is significantly different in
most places.
We don't delay checksums for IPv6/TCP, but we do take advantage of the
cached pseudo-header checksum.
Note: hardware-assisted checksumming defaults to "off". It is
enabled with ifconfig(8). See the manual page for details.
Implement hardware-assisted checksumming on the DP83820 Gigabit Ethernet,
3c90xB/3c90xC 10/100 Ethernet, and Alteon Tigon/Tigon2 Gigabit Ethernet.
enabling the INET6_MD_CKSUM option, which is defopted into opt_inet.h.
Supply an i386 assembly version of in6_cksum in in_cksum.s; on
P6-family cpu's, this is is roughly 20% faster than the C code in
sys/netinet6 for ethernet-mtu-sized mbufs in L1 cache. Turn on
INET6_MD_CKSUM in i386/conf/std.i386
While we're here, also nuke some now-obsolete XXX comments from
in_cksum.s.
This is based on amiga's siop driver, but converted to use
bus_space(9) functions and modified to fit bus_dma(9) framework.
Currently tested on NetBSD/arc with jazzio 53c710 SCSI,
which really requires bus_dma(9) functions :-)
Sync transfers and disconnect/reconnect are also working.
TODO:
- Test under more heavy load
- Clean up osiop_checkintr() hander
- Reorganize command queue and sync negotiation handling more suitable
for thorpej-scsipi mid-layer
- Re-think defered interrupt handling for amiga
based on the existing net/if_spppsubr.c stuff.
While there are completely userland (bpf based) implementations available,
those have a vastly larger per packet overhead thus causing major CPU
overhead and higher latency. On an i386 base router, running a 486DX at 50MHz
my line (768kBit/s downstream) was limited to something (varying) between 10
and 20 kByte/s effective download rate. With this implementation I get full
bandwidth (~85kByte/s).
This is client side only. Arguably the right way to add full PPPoE support
(including server side) would be a variation of the ppp line discipline and
appropriate modifications to pppd. I promise every help I can give to anyone
doing that - but I needed this realy fast. Besids, on low memory NAT boxes
with typically a single PPPoE connection, this implementation is more
lightweight than a pppd based one, which nicely fits my needs.
This now provides slightly more functionality than the FreeBSD layer1-newbus
interface. It was meant to be a simple change to one header and a few
c files, but the change rippled all through various stuff.
To prevent a change to the kernel<->userland interface right now the kernel
is now lying about card types to userland (but who cares). This will be fixed
when the userland interface changes, after layer 3 <-> layer 4 has been
fixed.
Functional changes:
Provide a clean interface for hardware drivers to attach to the upper
layers. This will need another small change in the B-channel handling
when a similar change to the layer 3 <-> layer 4 interface happens.
Avoid passing indices into global arrays of pointers around, instead pass
the pointers itself. Don't code hardware driver types by predefined magic
numbers (think LKM). Prepare for detachable drivers (think pcmcia).
While there remove some sets of function pointers always pointing to the
same function (meant to be the configurable set of D channel protocol
handlers). It is unlikely another supported D-channel protocol will fit into
that (maximal layer interface) abstraction. When we get support for another
protocol, we will need to come up with a workable interface. Besides, the
old implementation was, uhm, strange.
including layer_*.c if "options LKM". This is not the right way to fix
it, but we have as yet no standardized mechanism to add a "LKM code
library" to fill in gaps in the monolithic kernel's code.
Problem noted by <tron@netbsd.org>.