cd ${KERNSRCDIR}/${KERNARCHDIR}/compile && ${PRINTOBJDIR}
This is far simpler than the previous system, and more robust with
objdirs built via BSDOBJDIR.
The previous method of finding KERNOBJDIR when using BSDOBJDIR by
referencing _SRC_TOP_OBJ_ from another directory was extremely
fragile due to the depth first tree walk by <bsd.subdir.mk>, and
the caching of _SRC_TOP_OBJ_ (with MAKEOVERRIDES) which would be
empty on the *first* pass to create fresh objdirs.
This change requires adding sys/arch/*/compile/Makefile to create
the objdir in that directory, and descending into arch/*/compile
from arch/*/Makefile. Remove the now-unnecessary .keep_me files
whilst here.
Per lengthy discussion with Andrew Brown.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
counters. These counters do not exist on all CPUs, but where they
do exist, can be used for counting events such as dcache misses that
would otherwise be difficult or impossible to instrument by code
inspection or hardware simulation.
pmc(9) is meant to be a general interface. Initially, the Intel XScale
counters are the only ones supported.