* lpt device is defined in MI place (dev/ppbus/files.ppbus), dev/ic/lpt.c
is included there too; dev/ic/lpt.c is not included if ppbus is
configured or if there is alternative platform lpt (like for pc532)
* g/c MD lpt definitions and custom puc/upc attachments,
glue moved to conf/files and dev/pci/files.pci respectively; remove
device lpt definition from dev/isa/files.isa
* add ppbus parport attribute, atppc device attachments, adjust plip and lpt
glue
files for machines I know to have genuine PCI slots. As sent to tech-kern
for feedback in December 2003. Based on feedback, opencrypto is commented
out in the macppc GENERIC (due to absense of GENERIC_SOFTINT support),
and added to the sparc64 config (sys/arch/sparc64/conf/GENERIC32).
process context ('reaper').
From within the exiting process context:
* deactivate pmap and free vmspace while we can still block
* introduce MD cpu_lwp_free() - this cleans all MD-specific context (such
as FPU state), and is the last potentially blocking operation;
all of cpu_wait(), and most of cpu_exit(), is now folded into cpu_lwp_free()
* process is now immediatelly marked as zombie and made available for pickup
by parent; the remaining last lwp continues the exit as fully detached
* MI (rather than MD) code bumps uvmexp.swtch, cpu_exit() is now same
for both 'process' and 'lwp' exit
uvm_lwp_exit() is modified to never block; the u-area memory is now
always just linked to the list of available u-areas. Introduce (blocking)
uvm_uarea_drain(), which is called to release the excessive u-area memory;
this is called by parent within wait4(), or by pagedaemon on memory shortage.
uvm_uarea_free() is now private function within uvm_glue.c.
MD process/lwp exit code now always calls lwp_exit2() immediatelly after
switching away from the exiting lwp.
g/c now unneeded routines and variables, including the reaper kernel thread
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
called from userspace, and that messes things up.
Thanks to Mark Kettenis to pointing out that not using an alt stack
solved the "loop on gdb sig continuation" issue.
used for argument passing, plus %rax (used to pass the number of float
arguments to varargs functions), to avoid having it clobber caller-saved
registers. mcount is emitted "under the radar", so the compiler doesn't
know it should do this.
Change the kernel mcount entry/exit macros to use plain cli/sti, like on i386.
Remove p_raslock and rename p_lwplock p_lock (one lock is enough).
Simplify window test when adding a ras and correct test on VM_MAXUSER_ADDRESS.
Avoid unpredictable branch in i386 locore.S
(pad fields left in struct proc to avoid kernel bump)
containing signal posting, kernel-exit handling and sa_upcall processing.
XXX the pc532, sparc, sparc64 and vax ports should have their
XXX userret() code rearranged to use this.
uvm_swapout_threads will swapout LWPs which are running on another CPU:
- uvm_swapout_threads considers LWPs running on another CPU for swapout
if their l_swtime is high
- uvm_swapout_threads considers LWPs on the runqueue for swapout if their
l_swtime is high but these LWPs might be running by the time uvm_swapout
is called
symptoms of failure: panic in setrunqueue
fixes PR kern/23095