kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
clean up some other stuff along the way, including:
- use m68k/cacheops.*, remove duplicates from cpu.h.
- centralize a few declarations in (all the copies of) cpu.h.
- define M68K_VAC on platforms which have a VAC.
- switch the sun platforms to the (now common) proc_trampoline().
- do the phys_map thang on the sun platforms too, no reason not to.
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
counters. These counters do not exist on all CPUs, but where they
do exist, can be used for counting events such as dcache misses that
would otherwise be difficult or impossible to instrument by code
inspection or hardware simulation.
pmc(9) is meant to be a general interface. Initially, the Intel XScale
counters are the only ones supported.
be properly used by any misc. cloning device. While here, correct
a comment to indicate that "open" is the only entry point and that
everything else is handled with fileops.
- Switch all m68k-based ports over to __HAVE_SYSCALL_INTERN.
- Add systrace glue.
- Define struct mdproc in <m68k/proc.h> instead of <machine/proc.h>.
(They were all defined exactly the same anyway, other than a couple
of the MDP_* flags.)
MALLOC_NOINLINE, and VNODE_OP_NOINLINE. The exceptions are when they
include another config files that already defines the options, or if
they are for an embedded board, just define a few extra options, and
do not already define PIPE_SOCKETPAIR.
into kernel_object where this was missing.
This is a no-op on ports where VM_MIN_KERNEL_ADDRESS==0, ie all but
cesfic.
Confirmed and corrected by Chuck Silvers.