adjusted via sysctl. file systems that have hash tables which are
sized based on the value of this variable now resize those hash tables
using the new value. the max number of FFS softdeps is also recalculated.
convert various file systems to use the <sys/queue.h> macros for
their hash tables.
between creation of a file descriptor and close(2) when using kernel
assisted threads. What we do is stick descriptors in the table, but
mark them as "larval". This causes essentially everything to treat
it as a non-existent descriptor, except for fdalloc(), which sees a
filled slot so that it won't (incorrectly) allocate it again. When
a descriptor is fully constructed, the code that has constructed it
marks it as "mature" (which actually clears the "larval" flag), and
things continue to work as normal.
While here, gather all the code that gets a descriptor from the table
into a fd_getfile() function, and call it, rather than having the
same (sometimes incorrect) code copied all over the place.
callers and appropriate routines to cope. This makes fo_stat more
consistent with rest of fileops routines and also makes the fo_stat
match FreeBSD as an added bonus.
Discussed with Luke Mewburn on tech-kern@.
setattr calls on underlying vnodes the same as sockets and just return 0.
This whole thing needs to be gutted and replaced with either fall throughs
to specfs (the attr forwarding is just bizarre and leads to weird crap like
the above truncation problems), or better yet a real cloning device node.
in vfs_detach(). vfs_done may free global filesystem's resources,
typically those allocated in respective filesystem's init function.
Needed so those filesystems which went in via LKM have a chance to
clean after themselves before unloading. This fixes random panics
when LKM for filesystem using pools was loaded and unloaded several
times.
For each leaf filesystem, add appropriate vfs_done routine.
Problem turned out to be due to improper handling of reads beyond EOF:
they should just return without error with the uio unchanged, and the
caller will recognize this as a zero-byte return (EOF).
The previous fix to protect directory reads against bogus uio_offset
values returned EINVAL, which broke mount -o union, which only
union'ed in the lower directory if the upper directory cleanly
returned EOF.
While we're here, protect kernfs as well.
call with F_FSCTL set and F_SETFL calls generate calls to a new
fileop fo_fcntl. Add genfs_fcntl() and soo_fcntl() which return 0
for F_SETFL and EOPNOTSUPP otherwise. Have all leaf filesystems
use genfs_fcntl().
Reviewed by: thorpej
Tested by: wrstuden
Update coda to new struct lock in struct vnode.
make fdescfs, kernfs, portalfs, and procfs actually lock their vnodes.
It's not that hard.
Make unionfs set v_vnlock = NULL so any overlayed fs will call its
VOP_LOCK.
as with user-land programs, include files are installed by each directory
in the tree that has includes to install. (This allows more flexibility
as to what gets installed, makes 'partial installs' easier, and gives us
more options as to which machines' includes get installed at any given
time.) The old SYS_INCLUDES={symlinks,copies} behaviours are _both_
still supported, though at least one bug in the 'symlinks' case is
fixed by this change. Include files can't be build before installation,
so directories that have includes as targets (e.g. dev/pci) have to move
those targets into a different Makefile.
'const char *', and 'void *', respectively. The second arg is taken directly
from user arguments, and is const there, so must be const in the prototypes
and functions. The third arg is also taken directly from user arguments.
It doesn't have to be changed, but since it's cleaner to keep the type
the same as the user arg's type, and I'm already making the 'const char *'
change...
* Change the argument names to vop_link so they actually make sense.
* Implement vop_link and vop_symlink for all file systems, so they do proper
cleanup.
* Require the file system to decide whether or not linking and unlinking of
directories is allowed, and disable it for all current file systems.