Get rid of the original puffs_req(3) framework and use puffs_framebuf(3)
instead for file system requests. It has the advantage of being
suitable for transporting a distributed message passing protocol
and therefore us being able to run the file system server on any
host.
Ok, puffs is not quite here yet: libpuffs needs to grow request
routing support and the message contents need to be munged into a
host independent format. Saying which format would be telling,
but it might begin with an X, end in an L and have the 13th character
in the middle. Keep an eye out for the sequels: Parts 3+m/n.
Ok, ok, a few more words about it: stop holding puffs_cc as a holy
value and passing it around to almost every possible place (popquiz:
which kernel variable does this remind you of?). Instead, pass
the natural choice, puffs_usermount, and fetch puffs_cc via
puffs_cc_getcc() only in routines which actually need it. This
not only simplifies code, but (thanks to the introduction of
puffs_cc_getcc()) enables constructs which weren't previously sanely
possible, say layering as a curious example.
There's still a little to do on this front, but this was the major
fs interface blast.
separately
* provide puffs_cc_getcc()
This is in preparation for the removal of you-should-guess-what as
an argument to routines here and there and everywhere.
also synchronizes with puffs_mount() and does not return (exit) in the
parent process until the file system has been mounted. This makes
it possible to reliably run e.g. mount_foo jippi /kai ; cd /kai/ee
servers. Calling daemon() (i.e. fork()ing) inside a library can
cause nice surprises for e.g. threaded programs. As discussed with
Greg Oster & others.
alternative to the (vastly superior ;) continuation model. This
is very preliminary stuff and not compiled by default (which it
even won't do without some other patches I cannot commit yet).
The raison d'commit of the patch is a snippet which ensures proper
in-order dispatching of all operations, including those which don't
require a response. Previously many of them would be dispatched
simultaneosly, e.g. fsync and reclaim on the same node, which
obviously isn't all that nice for correct operation.
userspace, since it doesn't contain any information yet. I should
still rework this more so this is just a quickie to get the read/write
style interface more up to speed with the ioctl version.
interacts with the userspace file server:
* since the kernel-user communication is not purely request-response
anymore (hasn't been since 2006), try to rename some "request" to
"message". more similar mangling will take place in the future.
* completely rework how messages are allocated. previously most of
them were borrowed from the stack (originally *all* of them),
but now always allocate dynamically. this makes the structure
of the code much cleaner. also makes it possible to fix a
locking order violation. it enables plenty of future enhancements.
* start generalizing the transport interface to be independent of puffs
* move transport interface to read/write instead of ioctl. the
old one had legacy design problems, and besides, ioctl's suck.
implement a very generic version for now; this will be
worked on later hopefully some day reaching "highly optimized".
* implement libpuffs support behind existing library request
interfaces. this will change eventually (I hate those interfaces)
kernel to the file server for silly things the file server did,
e.g. attempting to create a file with size VSIZENOTSET. The file
server can handle these as it chooses, but the default action is
for it to throw its hands in the air and sing "goodbye, cruel world,
it's over, walk on by".