the number of bytes in the send queue, and FIONSPACE reports the
number of free bytes in the send queue. These ioctls permit applications
to monitor file descriptor transmission dynamics.
In examining prior art, FIONWRITE exists with the semantics given
here. FIONSPACE is provided so that programs may easily determine how
much space is left in the send queue; they do not need to know the
send queue size.
The fact that a write may block even if there is enough space in the
send queue for it is noted in the documentation.
FIONWRITE functionality may be used to implement TIOCOUTQ for Linux
emulation - Linux extended this ioctl to sockets, even though they are
not ttys.
to pool_init. Untouched pools are ones that either in arch-specific
code, or aren't initialiased during initial system startup.
Convert struct session, ucred and lockf to pools.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
* introduce fsetown(), fgetown(), fownsignal() - this sets/retrieves/signals
the owner of descriptor, according to appropriate sematics
of TIOCSPGRP/FIOSETOWN/SIOCSPGRP/TIOCGPGRP/FIOGETOWN/SIOCGPGRP ioctl; use
these routines instead of custom code where appropriate
* make every place handling TIOCSPGRP/TIOCGPGRP handle also FIOSETOWN/FIOGETOWN
properly, and remove the translation of FIO[SG]OWN to TIOC[SG]PGRP
in sys_ioctl() & sys_fcntl()
* also remove the socket-specific hack in sys_ioctl()/sys_fcntl() and
pass the ioctls down to soo_ioctl() as any other ioctl
change discussed on tech-kern@
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
lookup and allocation, and any dependency on NPROC or MAXUSERS.
NO_PID changed to -1 (and renamed NO_PGID) to remove artificial limit
on PID_MAX.
As discussed on tech-kern.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
This generates more useful information of a process who catches SIGINFO,
rather than always printing "runnable" (the process is marked runnable
because of the signal).
Inspired by the behavior of BSD/OS.
indicating an unhandled "command". ERESTART is -1, which can lead to
confusion. ERESTART has been moved to -3 and EPASSTHROUGH has been
placed at -4. No ioctl code should now return -1 anywhere. The
ioctl() system call is now properly restartable.
deal with shortages of the VM maps where the backing pages are mapped
(usually kmem_map). Try to deal with this:
* Group all information about the backend allocator for a pool in a
separate structure. The pool references this structure, rather than
the individual fields.
* Change the pool_init() API accordingly, and adjust all callers.
* Link all pools using the same backend allocator on a list.
* The backend allocator is responsible for waiting for physical memory
to become available, but will still fail if it cannot callocate KVA
space for the pages. If this happens, carefully drain all pools using
the same backend allocator, so that some KVA space can be freed.
* Change pool_reclaim() to indicate if it actually succeeded in freeing
some pages, and use that information to make draining easier and more
efficient.
* Get rid of PR_URGENT. There was only one use of it, and it could be
dealt with by the caller.
From art@openbsd.org.
only signal handler array sharable between threads
move other random signal stuff from struct proc to struct sigctx
This addresses kern/10981 by Matthew Orgass.