* Keep pointers to the first and last mbufs of the last record in the
socket buffer.
* Use the sb_lastrecord pointer in the sbappend*() family of functions
to avoid traversing the packet chain to find the last record.
* Add a new sbappend_stream() function for stream protocols which
guarantee that there will never be more than one record in the
socket buffer. This function uses the sb_mbtail pointer to perform
the data insertion. Make TCP use sbappend_stream().
On a profiling run, this makes sbappend of a TCP transmission using
a 1M socket buffer go from 50% of the time to .02% of the time.
Thanks to Bill Sommerfeld and YAMAMOTO Takashi for their debugging
assistance!
as necessary:
* Implement a new mbuf utility routine, m_copyup(), is is like
m_pullup(), except that it always prepends and copies, rather
than only doing so if the desired length is larger than m->m_len.
m_copyup() also allows an offset into the destination mbuf, which
allows space for packet headers, in the forwarding case.
* Add *_HDR_ALIGNED_P() macros for IP, IPv6, ICMP, and IGMP. These
macros expand to 1 if __NO_STRICT_ALIGNMENT is defined, so that
architectures which do not have strict alignment constraints don't
pay for the test or visit the new align-if-needed path.
* Use the new macros to check if a header needs to be aligned, or to
assert that it already is, as appropriate.
Note: This code is still somewhat experimental. However, the new
code path won't be visited if individual device drivers continue
to guarantee that packets are delivered to layer 3 already properly
aligned (which are rules that are already in use).
still in the chroot. If not, teleport the lookup to the chroot
and log. Closes an assisted-jail escape method pointed out by
xs@kittenz.org. Patch from xs@kittenz.org and myself
It's not even built if the option isn't present.
* Use cdev_decl() to generate prototypes for the devsw functions.
* Minor whitespace cleanup.
* Nuke the SYSTR_CLONE ioctl from orbit; instead, just clone it in
systraceopen(), like we do with svr4_net.
trying to MSG_PEEK for more than the socket can hold. The second is that
before sleeping waiting for more data, upcall the protocol telling it you
have just received data so it can kick itself to re-fill the just drained
socket buffer.
and an error occurs, make sure the socket doesn't retain a partial
copy by dropping the rest of the record.
This would otherwise trigger a panic("receive 1a") under DIAGNOSTIC.
Fixes PR#16990, suggested fix adapted.
Reviewed by Matt Thomas.
- implement SIMPLEQ_REMOVE(head, elm, type, field). whilst it's O(n),
this mirrors the functionality of SLIST_REMOVE() (the other
singly-linked list type) and FreeBSD's STAILQ_REMOVE()
- remove the unnecessary elm arg from SIMPLEQ_REMOVE_HEAD().
this mirrors the functionality of SLIST_REMOVE_HEAD() (the other
singly-linked list type) and FreeBSD's STAILQ_REMOVE_HEAD()
- remove notes about SIMPLEQ not supporting arbitrary element removal
- use SIMPLEQ_FOREACH() instead of home-grown for loops
- use SIMPLEQ_EMPTY() appropriately
- use SIMPLEQ_*() instead of accessing sqh_first,sqh_last,sqe_next directly
- reorder manual page; be consistent about how the types are listed
- other minor cleanups
enough to be useful, and broadening it so that it did would have meant
that operations possibly requiring synchronous disk activity would have
to be done in splbio(). This clearly was not going to work.
Worked around this in the LFS case by having lfs_cluster_callback put an
extra hold on the vnode before calling biodone(), and taking the hold
off without HOLDRELE's problematic list swapping. lfs_vunref() will take
care of that---in thread context---on the next write if need be.
Also, ensure that the list walking in lfs_{writevnodes,segunlock,gather}
takes into account the possibility that the list may change
underneath it (possibly because it itself deleted an element).
Tested on i386, test-compiled on alpha.
by default, and can be enabled by adding the SOSEND_LOAN option to your
kernel config. The SOSEND_COUNTERS option can be used to provide some
instrumentation.
Use of this option, combined with an application that does large enough
writes, gets us zero-copy on the TCP and UDP transmit path.