When a link-layer address changes (e.g., ifconfig ex0 link
02🇩🇪ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor
Advertisement to update the network-/link-layer address bindings
on our LAN peers.
Refuse a change of ethernet address to the address 00:00:00:00:00:00
or to any multicast/broadcast address. (Thanks matt@.)
Reorder ifnet ioctl operations so that driver ioctls may inherit
the functions of their "class"---ether_ioctl(), fddi_ioctl(), et
cetera---and the class ioctls may inherit from the generic ioctl,
ifioctl_common(), but both driver- and class-ioctls may override
the generic behavior. Make network drivers share more code.
Distinguish a "factory" link-layer address from others for the
purposes of both protecting that address from deletion and computing
EUI64.
Return consistent, appropriate error codes from network drivers.
Improve readability. KNF.
*** Details ***
In if_attach(), always initialize the interface ioctl routine,
ifnet->if_ioctl, if the driver has not already initialized it.
Delete if_ioctl == NULL tests everywhere else, because it cannot
happen.
In the ioctl routines of network interfaces, inherit common ioctl
behaviors by calling either ifioctl_common() or whichever ioctl
routine is appropriate for the class of interface---e.g., ether_ioctl()
for ethernets.
Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In
the user->kernel interface, SIOCSIFADDR's argument was an ifreq,
but on the protocol->ifnet interface, SIOCSIFADDR's argument was
an ifaddr. That was confusing, and it would work against me as I
make it possible for a network interface to overload most ioctls.
On the protocol->ifnet interface, replace SIOCSIFADDR with
SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to
invoke SIOCINITIFADDR.
In ifioctl(), give the interface the first shot at handling most
interface ioctls, and give the protocol the second shot, instead
of the other way around. Finally, let compatibility code (COMPAT_OSOCK)
take a shot.
Pull device initialization out of switch statements under
SIOCINITIFADDR. For example, pull ..._init() out of any switch
statement that looks like this:
switch (...->sa_family) {
case ...:
..._init();
...
break;
...
default:
..._init();
...
break;
}
Rewrite many if-else clauses that handle all permutations of IFF_UP
and IFF_RUNNING to use a switch statement,
switch (x & (IFF_UP|IFF_RUNNING)) {
case 0:
...
break;
case IFF_RUNNING:
...
break;
case IFF_UP:
...
break;
case IFF_UP|IFF_RUNNING:
...
break;
}
unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and
#ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4).
In ipw(4), remove an if_set_sadl() call that is out of place.
In nfe(4), reuse the jumbo MTU logic in ether_ioctl().
Let ethernets register a callback for setting h/w state such as
promiscuous mode and the multicast filter in accord with a change
in the if_flags: ether_set_ifflags_cb() registers a callback that
returns ENETRESET if the caller should reset the ethernet by calling
if_init(), 0 on success, != 0 on failure. Pull common code from
ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(),
and register if_flags callbacks for those drivers.
Return ENOTTY instead of EINVAL for inappropriate ioctls. In
zyd(4), use ENXIO instead of ENOTTY to indicate that the device is
not any longer attached.
Add to if_set_sadl() a boolean 'factory' argument that indicates
whether a link-layer address was assigned by the factory or some
other source. In a comment, recommend using the factory address
for generating an EUI64, and update in6_get_hw_ifid() to prefer a
factory address to any other link-layer address.
Add a routing message, RTM_LLINFO_UPD, that tells protocols to
update the binding of network-layer addresses to link-layer addresses.
Implement this message in IPv4 and IPv6 by sending a gratuitous
ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD
messages on a change of an interface's link-layer address.
In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address
that is broadcast/multicast or equal to 00:00:00:00:00:00.
Make ether_ioctl() call ifioctl_common() to handle ioctls that it
does not understand.
In gif(4), initialize if_softc and use it, instead of assuming that
the gif_softc and ifp overlap.
Let ifioctl_common() handle SIOCGIFADDR.
Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels
that certain invariants on a struct route are satisfied.
In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit
about the ioctls that we do not allow on an agr(4) member interface.
bzero -> memset. Delete unnecessary casts to void *. Use
sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with
NULL instead of "testing truth". Replace some instances of (type
*)0 with NULL. Change some K&R prototypes to ANSI C, and join
lines.
The later changes were only cosmetic, cause problems in IPv6-only-
connections (reported by Wolfgang Solfrank in private mail), as well
as reintroducing the original bug again.
the opportunity to handle an ioctl before generic ifioctl handling
occurs. This will ease extending the kernel and sharing of code
between drivers.
First steps: Make the signature of ifioctl_common() match struct
ifinet->if_ioctl. Convert SIOCSIFCAP and SIOCSIFMTU to the new
ifioctl() regime, throughout the kernel.
MRU to the link's MTU and initiate an MRU negotiation with the peer.
This is useful when the PPP session is bridged from Ethernet to ATM
by an ADSL modem (such as the Linksys AM200). Unless we negotiate the
lower MRU, the peer is unaware that 1500-byte packets will not make
it umolested across the link (the Linksys AM200 silently truncates them
to 1498 bytes, creating a nice PMTU blackhole).
Note that the PPP RFC says peers MUST accept 1500 byte packets,
regardless of the negotiated MRU, so most ISPs which use PPPoA will
probably still send 1500-byte packets. However, I persuaded my ISP
(Andrews and Arnold) to modify their software to generate an ICMP error
"fragment needed" for packets with IP.DF set which are larger than the
negotiated MRU. They will still forward non-IP.DF packets, with the
associated truncation, but at least my PMTU troubles have gone.
parentheses in return statements.
Cosmetic: don't open-code TAILQ_FOREACH().
Cosmetic: change types of variables to avoid oodles of casts: in
in6_src.c, avoid casts by changing several route_in6 pointers
to struct route pointers. Remove unnecessary casts to caddr_t
elsewhere.
Pave the way for eliminating address family-specific route caches:
soon, struct route will not embed a sockaddr, but it will hold
a reference to an external sockaddr, instead. We will set the
destination sockaddr using rtcache_setdst(). (I created a stub
for it, but it isn't used anywhere, yet.) rtcache_free() will
free the sockaddr. I have extracted from rtcache_free() a helper
subroutine, rtcache_clear(). rtcache_clear() will "forget" a
cached route, but it will not forget the destination by releasing
the sockaddr. I use rtcache_clear() instead of rtcache_free()
in rtcache_update(), because rtcache_update() is not supposed
to forget the destination.
Constify:
1 Introduce const accessor for route->ro_dst, rtcache_getdst().
2 Constify the 'dst' argument to ifnet->if_output(). This
led me to constify a lot of code called by output routines.
3 Constify the sockaddr argument to protosw->pr_ctlinput. This
led me to constify a lot of code called by ctlinput routines.
4 Introduce const macros for converting from a generic sockaddr
to family-specific sockaddrs, e.g., sockaddr_in: satocsin6,
satocsin, et cetera.
interfaces ippp(4) and pppoe(4). Insufficient checking of options presented
by the peer may cause writing of copies of the malicious input beyond the
end of a buffer allocated for that purpose.
Issue found by pavel@
Fix from martin@
This is SA2006-019 (CVE-2006-4304)
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html
/sys/net/if_spppvar.h says:
"Lower layer drivers that are always ready to communicate
(like hardware HDLC) can shortcut pp_up from pp_tls,
and pp_down from pp_tlf."
When I follow those instructions, I get a kernel stack
overflow as soon as I open the HDLC device.
Here is the loop:
sppp_ioctl calls sppp_lcp_open
sppp_lcp_open calls sppp_open_event
sppp_open_event calls sppp_lcp_tls
sppp_lcp_tls calls pp_tls
pp_tls is the SHORTCUT to sppp_lcp_up
sppp_lcp_up calls spp_lcp_open
...and around we go until the stack overflows.
The fix is to reverse the order of the action (tls)
and the state change (from INITIAL to STARTING) in
sppp_open_event.
There is a similar loop during closing:
sppp_ioctl calls sppp_lcp_close
sppp_lcp_close calls sppp_close_event
spp_close_event calls sppp_lcp_tlf
sppp_lcp_tlf calls pp_tlf
pp_tlf is the SHORTCUT to sppp_lcp_down
sppp_lcp_down calls sppp_lcp_close
...and around we go until the stack overflows.
The fix is to reverse the order of the action (tlf)
and the state change (from STARTING to INITIAL) in
sppp_close_event.
Separately, while I was discovering this, I noticed
that pp_tlf was being called unconditionally rather
than first checking to see if it is NULL. pp_tlf
is a callout from sppp to the hdlc device driver.
Elsewhere in sppp, this is always checked for NULL
before calling it, and the comments in if_spppvar.h
imply that filling it in is optional.
From spppvar.h:
"These functions need to be filled in by the lower layer
(hardware) drivers if they request notification from the
PPP layer whether the link is actually required."
This clearly says that pp_tlf and pp_tls are optional
and so sppp must check before calling them.
- most of the kernel code will not care about the actual encoding of
scope zone IDs and won't touch "s6_addr16[1]" directly.
- similarly, most of the kernel code will not care about link-local
scoped addresses as a special case.
- scope boundary check will be stricter. For example, the current
*BSD code allows a packet with src=::1 and dst=(some global IPv6
address) to be sent outside of the node, if the application do:
s = socket(AF_INET6);
bind(s, "::1");
sendto(s, some_global_IPv6_addr);
This is clearly wrong, since ::1 is only meaningful within a single
node, but the current implementation of the *BSD kernel cannot
reject this attempt.
- and, while there, don't try to remove the ff02::/32 interface route
entry in in6_ifdetach() as it's already gone.
This also includes some level of support for the standard source
address selection algorithm defined in RFC3484, which will be
completed on in the future.
From the KAME project via JINMEI Tatuya.
Approved by core@.
the non point-to-point interfaces that has one queue, and one used by
the point to point interfaces that has two queues. No functional changes.
XXX: The ALTQ stuff makes the code ugly.
XXX: More cleanup to come
As long as we receive data from the peer, don't worry. When we have not
received anything within the "max_noreceive" period, we start sending LCP
echo requests and count them, until we receive an answer (or some data)
or the "maxalive" count of not answered echo requests is reached.
All this is checked at a global 10 seconds interval for all interfaces.
The "max_noreceive" period and the "maxalive" count are configurable per
interface.
Hopefully this will fix ALTQ for ISDN and PPPoE interfaces.
While there remove an unsued function which contained dubious code
(accessing interface queue internals w/o the proper macros).