of the sibling list so that find_stopped_child can be optimised to avoid
traversing the entire sibling list - helps when a process has a lot of
children.
- Modify locking in pfind() and pgfind() to that the caller can rely on the
result being valid, allow caller to request that zombies be findable.
- Rename pfind() to p_find() to ensure we break binary compatibility.
- Remove svr4_pfind since p_find willnow do the job.
- Modify some of the SMP locking of the proc lists - signals are still stuffed.
Welcome to 1.6ZF
Right now the only flag is used to indicate if a ksiginfo_t is a
result of a trap. Add a predicate macro to test for this flag.
* Add initialization macros for ksiginfo_t's.
* Add accssor macro for ksi_trap. Expands to 0 if the ksiginfo_t was
not the result of a trap. This matches the sigcontext trapcode semantics.
* In kpsendsig(), use KSI_TRAP_P() to select the lwp that gets the signal.
Inspired by Matthias Drochner's fix to kpsendsig(), but correctly handles
the case of non-trap-generated signals that have a > 0 si_code.
This patch fixes a signal delivery problem with threaded programs noted by
Matthias Drochner on tech-kern.
As discussed on tech-kern. Reviewed and OK's by Christos.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
possible to use alternate system call tables. This is usefull for
displaying correctly the arguments in Mach binaries traces.
If NULL is given, then the regular systam call table for the process is used.
This does not buy us new functionnality for now, because we still have to
discover how mach_init (which acts as a name server, enabling processes to
discover each other's ports) is able to receive messages from other processes
(this is a bootstrap problem, and the bootstrap port might be the place to
search).
While we are there:
- removed a lot of debug which is now available using ktrace.
- reworked message handling to avoid mutliple copyin/copyout of the
same data. ktrace of Mach message now uses the in-kernel copy of the
message instead of copying it from userland.
- packed mach trap handlers arguments into a structure to avoid modifying
everything next time we have to add an argument.
original system call number, which can be negative for a Mach trap.
We cannot just replace code by realcode, because ktrsyscall uses it as
an index in the system call table, thus crashing the kernel when the
value is negative.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
between creation of a file descriptor and close(2) when using kernel
assisted threads. What we do is stick descriptors in the table, but
mark them as "larval". This causes essentially everything to treat
it as a non-existent descriptor, except for fdalloc(), which sees a
filled slot so that it won't (incorrectly) allocate it again. When
a descriptor is fully constructed, the code that has constructed it
marks it as "mature" (which actually clears the "larval" flag), and
things continue to work as normal.
While here, gather all the code that gets a descriptor from the table
into a fd_getfile() function, and call it, rather than having the
same (sometimes incorrect) code copied all over the place.
p_cpu member to struct proc. Use this in certain places when
accessing scheduler state, etc. For the single-processor case,
just initialize p_cpu in fork1() to avoid having to set it in the
low-level context switch code on platforms which will never have
multiprocessing.
While I'm here, comment a few places where there are known issues
for the SMP implementation.
- need deep compare of open files, not a shallow pointer compare.
- reorder fdrelease()/FILE_UNUSE() invocations so fdrelease doesn't
block waiting for something which can't happen until after it returns.
- Change ktrace interface to pass in the current process, rather than
p->p_tracep, since the various ktr* function need curproc anyway.
- Add curproc as a parameter to mi_switch() since all callers had it
handy anyway.
- Add a second proc argument for inferior() since callers all had
curproc handy.
Also, miscellaneous cleanups in ktrace:
- ktrace now always uses file-based, rather than vnode-based I/O
(simplifies, increases type safety); eliminate KTRFLAG_FD & KTRFAC_FD.
Do non-blocking I/O, and yield a finite number of times when receiving
EWOULDBLOCK before giving up.
- move code duplicated between sys_fktrace and sys_ktrace into ktrace_common.
- simplify interface to ktrwrite()
state into global and per-CPU scheduler state:
- Global state: sched_qs (run queues), sched_whichqs (bitmap
of non-empty run queues), sched_slpque (sleep queues).
NOTE: These may collectively move into a struct schedstate
at some point in the future.
- Per-CPU state, struct schedstate_percpu: spc_runtime
(time process on this CPU started running), spc_flags
(replaces struct proc's p_schedflags), and
spc_curpriority (usrpri of processes on this CPU).
- Every platform must now supply a struct cpu_info and
a curcpu() macro. Simplify existing cpu_info declarations
where appropriate.
- All references to per-CPU scheduler state now made through
curcpu(). NOTE: this will likely be adjusted in the future
after further changes to struct proc are made.
Tested on i386 and Alpha. Changes are mostly mechanical, but apologies
in advance if it doesn't compile on a particular platform.
MALLOC()/FREE().
- In ktrgenio():
- Don't allocate the entire size of the I/O for the temporary
buffer used to write the data to the trace file. Instead,
do it in page-sized chunks.
- As in uiomove(), preempt the process if we are hogging the CPU.
- If writing to the trace file errors, abort rather than continuing
to loop through the buffer.
From Artur Grabowski <art@stacken.kth.se>, with some additional cleanup
by me.
calls to reflect this. Also, block statclock rather than softclock during
in the proclist locking functions, to address a problem reported on
current-users by Sean Doran.
write lock when doing PID allocation, and during the process exit path.
Use a read lock every where else, including within schedcpu() (interrupt
context). Note that holding the write lock implies blocking schedcpu()
from running (blocks softclock).
PID allocation is now MP-safe.
Note this actually fixes a bug on single processor systems that was probably
extremely difficult to tickle; it was possible that schedcpu() would run
off a bad pointer if the right clock interrupt happened to come in the
middle of a LIST_INSERT_HEAD() or LIST_REMOVE() to/from allproc.
count is 0, wait for use count to drain before finishing the close.
This is necessary in order for multiple processes to safely share file
descriptor tables.