Note, config whines about things like:
files.acpi:30: attaching undefined device `apm'
I intentionally was a lazy boy and didn't include a ton of dirt to
keep the hot napalm and riot blasts in the config thread rolling ;)
tested by jruoho (thanks!)
module instruments every function in the kernel with entry and exit
probes. These probes are true zero-effect probes in that they don't
exist in the code until they are enabled. The probes are enabled by
directly patching the function entry and exit points to make jumps into
the dtrace framework.
This gives us over 29,000 trace points in the kernel.
- Separate the suser part of the bsd44 secmodel into its own secmodel
and directory, pending even more cleanups. For revision history
purposes, the original location of the files was
src/sys/secmodel/bsd44/secmodel_bsd44_suser.c
src/sys/secmodel/bsd44/suser.h
- Add a man-page for secmodel_suser(9) and update the one for
secmodel_bsd44(9).
- Add a "secmodel" module class and use it. Userland program and
documentation updated.
- Manage secmodel count (nsecmodels) through the module framework.
This eliminates the need for secmodel_{,de}register() calls in
secmodel code.
- Prepare for secmodel modularization by adding relevant module bits.
The secmodels don't allow auto unload. The bsd44 secmodel depends
on the suser and securelevel secmodels. The overlay secmodel depends
on the bsd44 secmodel. As the module class is only cosmetic, and to
prevent ambiguity, the bsd44 and overlay secmodels are prefixed with
"secmodel_".
- Adapt the overlay secmodel to recent changes (mainly vnode scope).
- Stop using link-sets for the sysctl node(s) creation.
- Keep sysctl variables under nodes of their relevant secmodels. In
other words, don't create duplicates for the suser/securelevel
secmodels under the bsd44 secmodel, as the latter is merely used
for "grouping".
- For the suser and securelevel secmodels, "advertise presence" in
relevant sysctl nodes (sysctl.security.models.{suser,securelevel}).
- Get rid of the LKM preprocessor stuff.
- As secmodels are now modules, there's no need for an explicit call
to secmodel_start(); it's handled by the module framework. That
said, the module framework was adjusted to properly load secmodels
early during system startup.
- Adapt rump to changes: Instead of using empty stubs for securelevel,
simply use the suser secmodel. Also replace secmodel_start() with a
call to secmodel_suser_start().
- 5.99.20.
Testing was done on i386 ("release" build). Spearated module_init()
changes were tested on sparc and sparc64 as well by martin@ (thanks!).
Mailing list reference:
http://mail-index.netbsd.org/tech-kern/2009/09/25/msg006135.html
tested with a DEBUG+DIAGNOSTIC+LOCKDEBUG kernel. To summerise NiLFS, i'll
repeat my posting to tech-kern here:
NiLFS stands for New implementation of Logging File System; LFS done
right they claim :) It is at version 2 now and is being developed by NTT, the
Japanese telecom company and recently put into the linux source tree. See
http://www.nilfs.org. The on-disc format is not completely frozen and i expect
at least one minor revision to come in time.
The benefits of NiLFS are build-in fine-grained checkpointing, persistent
snapshots, multiple mounts and very large file and media support. Every
checkpoint can be transformed into a snapshot and v.v. It is said to perform
very well on flash media since it is not overwriting pieces apart from a
incidental update of the superblock, but that might change. It is accompanied
by a cleaner to clean up the segments and recover lost space.
My work is not a port of the linux code; its a new implementation. Porting the
code would be more work since its very linux oriented and never written to be
ported outside linux. The goal is to be fully interchangable. The code is non
intrusive to other parts of the kernel. It is also very light-weight.
The current state of the code is read-only access to both clean and dirty
NiLFS partitions. On mounting a dirty partition it rolls forward the log to
the last checkpoint. Full read-write support is however planned!
Just as the linux code, mount_nilfs allows for the `head' to be mounted
read/write and allows multiple read-only snapshots/checkpoint mounts next to
it.
By allowing the RW mount at a different snapshot for read-write it should be
possible eventually to revert back to a previous state; i.e. try to upgrade a
system and being able to revert to the exact state prior to the upgrade.
Compared to other FS's its pretty light-weight, suitable for embedded use and
on flash media. The read-only code is currently 17kb object code on
NetBSD/i386. I doubt the read-write code will surpass the 50 or 60. Compared
this to FFS being 156kb, UDF being 84 kb and NFS being 130kb. Run-time memory
usage is most likely not very different from other uses though maybe a bit
higher than FFS.
PR kern/16942 panic with softdep and quotas
PR kern/19565 panic: softdep_write_inodeblock: indirect pointer #1 mismatch
PR kern/26274 softdep panic: allocdirect_merge: ...
PR kern/26374 Long delay before non-root users can write to softdep partitions
PR kern/28621 1.6.x "vp != NULL" panic in ffs_softdep.c:4653 while unmounting a softdep (+quota) filesystem
PR kern/29513 FFS+Softdep panic with unfsck-able file-corruption
PR kern/31544 The ffs softdep code appears to fail to write dirty bits to disk
PR kern/31981 stopping scsi disk can cause panic (softdep)
PR kern/32116 kernel panic in softdep (assertion failure)
PR kern/32532 softdep_trackbufs deadlock
PR kern/37191 softdep: locking against myself
PR kern/40474 Kernel panic after remounting raid root with softdep
Retire softdep, pass 2. As discussed and later formally announced on the
mailing lists.