called with every buffer written through spec_strategy().
Used by fss(4). Future file-system-internal snapshots will need them too.
Welcome to 1.6ZK
Approved by: Jason R. Thorpe <thorpej@netbsd.org>
suspending.
Move vfs_write_suspend() and vfs_write_resume() from kern/vfs_vnops.c
to kern/vfs_subr.c.
Change vnode write gating in ufs/ffs/ffs_softdep.c (from FreeBSD).
When vnodes are throttled in softdep_trackbufs() check for
file system suspension every 10 msecs to avoid a deadlock.
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
file system.
The function vfs_write_suspend stops all new write operations to a file
system, allows any file system modifying system calls already in progress
to complete, then sync's the file system to disk and returns. The
function vfs_write_resume allows the suspended write operations to
complete.
From FreeBSD with slight modifications.
Approved by: Frank van der Linden <fvdl@netbsd.org>
mv MNT_GONE, MNT_UNMOUNT and MNT_WANTRDWR to this field
additonally add mnt_writeopcountupper and mnt_writeopcountlower fields
in preparation for pending write suspension support work
bump kernel version to 1.6ZD
* Remove the "lwp *" argument that was added to vget(). Turns out
that nothing actually used it!
* Remove the "lwp *" arguments that were added to VFS_ROOT(), VFS_VGET(),
and VFS_FHTOVP(); all they did was pass it to vget() (which, as noted
above, didn't use it).
* Remove all of the "lwp *" arguments to internal functions that were added
just to appease the above.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
1. sa_len was not properly checked.
2. sa_family was not properly checked [even used as an array index!]
3. we only know about inet4 and inet6, so make sure that the corresponding
data is valid before using it.
4. keep reference counts of addresses used (is that necessary?)
- Under chroot it displays only the visible filesystems with appropriate paths.
- The statfs f_mntonname gets adjusted to contain the real path from root.
- While was there, fixed a bug in ext2fs, locking problems with vfs_getfsstat(),
and factored out some of the vfsop statfs() code to copy_statfs_info(). This
fixes the problem where some filesystems forgot to set fsid.
- Made coda look more like a normal fs.
malloc types into a structure, a pointer to which is passed around,
instead of an int constant. Allow the limit to be adjusted when the
malloc type is defined, or with a function call, as suggested by
Jonathan Stone.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
enough to be useful, and broadening it so that it did would have meant
that operations possibly requiring synchronous disk activity would have
to be done in splbio(). This clearly was not going to work.
Worked around this in the LFS case by having lfs_cluster_callback put an
extra hold on the vnode before calling biodone(), and taking the hold
off without HOLDRELE's problematic list swapping. lfs_vunref() will take
care of that---in thread context---on the next write if need be.
Also, ensure that the list walking in lfs_{writevnodes,segunlock,gather}
takes into account the possibility that the list may change
underneath it (possibly because it itself deleted an element).
Tested on i386, test-compiled on alpha.
first. This is necessary to avoid warnings with -fshort-enums. Casting
to an int really should be enough, but turns out not to be.
This change will be documented in doc/HACKS.
deal with shortages of the VM maps where the backing pages are mapped
(usually kmem_map). Try to deal with this:
* Group all information about the backend allocator for a pool in a
separate structure. The pool references this structure, rather than
the individual fields.
* Change the pool_init() API accordingly, and adjust all callers.
* Link all pools using the same backend allocator on a list.
* The backend allocator is responsible for waiting for physical memory
to become available, but will still fail if it cannot callocate KVA
space for the pages. If this happens, carefully drain all pools using
the same backend allocator, so that some KVA space can be freed.
* Change pool_reclaim() to indicate if it actually succeeded in freeing
some pages, and use that information to make draining easier and more
efficient.
* Get rid of PR_URGENT. There was only one use of it, and it could be
dealt with by the caller.
From art@openbsd.org.
VOP_PUTPAGES() just because the vnode has no pages. layered filesystems
will want to pass these calls on through to the underlying filesystem,
and non-layered filesystems may need to remove the vnode from the
syncer queues. fix up MP locking and add some locking assertions.
fixes PRs 12284 and 14640.
executable mappings. Stop overloading VTEXT for this purpose (VTEXT
also has another meaning).
- Rename vn_marktext() to vn_markexec(), and use it when executable
mappings of a vnode are established.
- In places where we want to set VTEXT, set it in v_flag directly, rather
than making a function call to do this (it no longer makes sense to
use a function call, since we no longer overload VTEXT with VEXECMAP's
meaning).
VEXECMAP suggested by Chuq Silvers.
- remove special treatment of pager_map mappings in pmaps. this is
required now, since I've removed the globals that expose the address range.
pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's
no longer any need to special-case it.
- eliminate struct uvm_vnode by moving its fields into struct vnode.
- rewrite the pageout path. the pager is now responsible for handling the
high-level requests instead of only getting control after a bunch of work
has already been done on its behalf. this will allow us to UBCify LFS,
which needs tighter control over its pages than other filesystems do.
writing a page to disk no longer requires making it read-only, which
allows us to write wired pages without causing all kinds of havoc.
- use a new PG_PAGEOUT flag to indicate that a page should be freed
on behalf of the pagedaemon when it's unlocked. this flag is very similar
to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the
pageout fails due to eg. an indirect-block buffer being locked.
this allows us to remove the "version" field from struct vm_page,
and together with shrinking "loan_count" from 32 bits to 16,
struct vm_page is now 4 bytes smaller.
- no longer use PG_RELEASED for swap-backed pages. if the page is busy
because it's being paged out, we can't release the swap slot to be
reallocated until that write is complete, but unlike with vnodes we
don't keep a count of in-progress writes so there's no good way to
know when the write is done. instead, when we need to free a busy
swap-backed page, just sleep until we can get it busy ourselves.
- implement a fast-path for extending writes which allows us to avoid
zeroing new pages. this substantially reduces cpu usage.
- encapsulate the data used by the genfs code in a struct genfs_node,
which must be the first element of the filesystem-specific vnode data
for filesystems which use genfs_{get,put}pages().
- eliminate many of the UVM pagerops, since they aren't needed anymore
now that the pager "put" operation is a higher-level operation.
- enhance the genfs code to allow NFS to use the genfs_{get,put}pages
instead of a modified copy.
- clean up struct vnode by removing all the fields that used to be used by
the vfs_cluster.c code (which we don't use anymore with UBC).
- remove kmem_object and mb_object since they were useless.
instead of allocating pages to these objects, we now just allocate
pages with no object. such pages are mapped in the kernel until they
are freed, so we can use the mapping to find the page to free it.
this allows us to remove splvm() protection in several places.
The sum of all these changes improves write throughput on my
decstation 5000/200 to within 1% of the rate of NetBSD 1.5
and reduces the elapsed time for "make release" of a NetBSD 1.5
source tree on my 128MB pc to 10% less than a 1.5 kernel took.
adjusted via sysctl. file systems that have hash tables which are
sized based on the value of this variable now resize those hash tables
using the new value. the max number of FFS softdeps is also recalculated.
convert various file systems to use the <sys/queue.h> macros for
their hash tables.
that fails, just try to recycle a vnode. If we can't allocate or
recycle, issue a warning, sleep a bit, and try the whole thing
again.
This prevents us from blocking forever if we want to use a very large
number of vnodes, but don't have {memory,kva} resources from which to
allocate them.
has VXLOCK set - it's already being vgoned, most likely by one of our
callers. If we call vgone, we can end up sleeping against ourself
with VXLOCK set - we'll start the race for root.
Pointed out by Love <lha@stacken.kth.se> on tech-kern. Analysis from
Artur Grabowski <art@openbsd.org> via Love.
Should resolve PR kern/13077
vfs_busy'ing just before the dounmount() call. This is to avoid
sleeping with the mountlist_slock held -- but we must acquire
syncer_lock before vfs_busy because the syncer itself uses
syncer_lock -> vfs_busy locking order.
each of the basic types (anonymous data, executable image, cached files)
and prevent the pagedaemon from reusing a given page if that would reduce
the count of that type of page below a sysctl-setable minimum threshold.
the thresholds are controlled via three new sysctl tunables:
vm.anonmin, vm.vnodemin, and vm.vtextmin. these tunables are the
percentages of pageable memory reserved for each usage, and we do not allow
the sum of the minimums to be more than 95% so that there's always some
memory that can be reused.
between write i/os in a disk-based filesystem vs. the disk block being
freed by a truncation, allocated to a new file, and written again with
different data. if the disk driver reorders the requests and does
the second i/o first, the old data will clobber the new, corrupting
the new file.
tsleep() instead of DELAY. Also, keep trying flushing buffers when the
number of dirty buffers decreases (20 rounds may not be enouth for a
very large buffer cache).
Using tsleep instead of delay gives a chance to others kernel threads to run,
which is needed for raidframe. With this change I've not been able to
reproduce the 'dirty buffer not flushed' problem with raidframe.
use that to inform about way to raise current limit when we reach maximum
number of processes, descriptors or vnodes
XXX hopefully I catched all users of tablefull()
- add a new global variable, doing_shutdown, which is nonzero if
vfs_shutdown() or panic() have been called.
- in panic, set RB_NOSYNC if doing_shutdown is already set on entry
so we don't reenter vfs_shutdown if we panic'ed there.
- in vfs_shutdown, don't use proc0's process for sys_sync unless
curproc is NULL.
- in lockmgr, attribute successful locks to proc0 if doing_shutdown
&& curproc==NULL, and panic if we can't get the lock right away; avoids the
spurious lockmgr DIAGNOSTIC panic from the ddb reboot command.
- in subr_pool, deal with curproc==NULL in the doing_shutdown case.
- in mfs_strategy, bitbucket writes if doing_shutdown, so we don't
wedge waiting for the mfs process.
- in ltsleep, treat ((curproc == NULL) && doing_shutdown) like the
panicstr case.
Appears to fix: kern/9239, kern/10187, kern/9367.
May also fix kern/10122.
in vfs_detach(). vfs_done may free global filesystem's resources,
typically those allocated in respective filesystem's init function.
Needed so those filesystems which went in via LKM have a chance to
clean after themselves before unloading. This fixes random panics
when LKM for filesystem using pools was loaded and unloaded several
times.
For each leaf filesystem, add appropriate vfs_done routine.
mode and ownership bits are flushed to disk before the vnode is
reclaimed.
The check, introduced in the softdep merge, assumes that if no blocks
are dirty, no file data *or metadata* needs to be flushed to disk. This
is true of ffs, but is not true of lfs, and may not be true of other
filesystems.
Tested by myself and Bill Squier <groo@cs.stevens-tech.edu>.
(Previously buffers could be marked dirty by the cleaner, and possibly by
other means.)
Also check for softdep mount in vfs_shutdown before trying to bawrite
buffers, since other filesystems don't need it and lfs doesn't bawrite.
(This fragment reviewed by fvdl.)
Partially addresses PR#8964.
default, as the copyright on the main file (ffs_softdep.c) is such
that is has been put into gnusrc. options SOFTDEP will pull this
in. This code also contains the trickle syncer.
Bump version number to 1.4O
The problem was due to an interaction between the doomed unmounts done by
amd and getnewvnode.
I convinced myself that it's ok for getnewvnode() to do a sleeping vfs_busy().
Tested with multiple builds running while another process attempted to unmount
/usr once a second.
getnewvnode now checks this bit, and it if's set makes sure a vnode's not
locked before removing it from the free list.
Closes PR 7954 by Alan Barrett <apb@iafrica.com>.
mp->mnt_flags & MNT_MWAIT is replaced by mp->mnt_wcnt, and a new mount
flag MNT_GONE is created (reusing the same bit).
In insmntque(), add DIAGNOSTIC check to fail if the filesystem vnode
is being moved to is in the process of being unmounted.
getnewvnode() now protects the list of vnodes active on mp with
vfs_busy()/vfs_unbusy().
To avoid generating spurious errors during a doomed unmount, change
the "wait for unmount to finish" protocol between dounmount() and
vfs_busy(). In vfs_busy(), instead of only sleeping once, sleep until
either MNT_UNMOUNT is clear or MNT_GONE is set; also, maintain a count
of waiters in mp->mnt_wcnt so that dounmount() knows when it's safe to
free mp.
tested by running a "while :; do mount /d1; umount -f /d1; done" loop
against multiple find(1) processes.
deadlock in VOP_FSYNC() if the unreferenced vnode picked for
reclamation happened to be stacked on top of a vnode the process
already had locked. This could happen if the same filesystem was
accessed both through a union mount and directly; it seemed to happen
most frequently when the direct access was through NFS.
Avoid this deadlock by changing vinvalbuf to pass a new FSYNC_RECLAIM
flag bit to VOP_FSYNC() to indicate that a reclaim is in progress and
only a `shallow' fsync is necessary.
Do nothing in *_fsync() in umapfs, nullfs, and unionfs when
FSYNC_RECLAIM is set; the underlying vnodes will shortly be released
in *_reclaim and may be reclaimed (and fsync'ed) later.
only benefit this provides is that we don't use kmem_map to map the memory
used for vnodes (though, this is a 30 virtual page savings on my PPro)
since vnodes are never freed (they have their own freelist).
* we already have the vnode interlock, so vref() should not ask for it again.
* we call VOP_RECLAIM/VOP_INACTIVE(), which shouldn't be duplicated in vrele().
UVM was written by chuck cranor <chuck@maria.wustl.edu>, with some
minor portions derived from the old Mach code. i provided some help
getting swap and paging working, and other bug fixes/ideas. chuck
silvers <chuq@chuq.com> also provided some other fixes.
this is the rest of the MI portion changes.
this will be KNF'd shortly. :-)
unmounting all of the file systems. If we encounter a condition where
all of the dirty buffers could not flush, then don't unmount file systems,
since it might be likely to wedge.
anon cred are the same. Should probably be handled better in the mountd,
but this will do for now. Fixes PR 469, submitted Sept 1994 by
a certain "Jason R. Thorpe".. ;-)
so that if the drop to spl0() causes another panic (e.g. because there's
still some fatal hardware interrupt that's pending) we'll know that we
dropped IPL to sync the disks.
* When a delayed write buffer falls off the LRU queue, arrange for it to go on
the AGE queue after being flushed out to disk.
* When a delayed write buffer is synced, leave it in its relative position in
the LRU queue.
work. Not quite as good as with the Lite2 merges, but it'll do until then.
* dounmount() expects to be called with the mountpoint marked busy
* all callers of dounmount() thus make the call themselves
* if a filesystem was being unmounted, and we're woken up in vfs_busy(),
don't reference the mountpoint struct pointer, as it has very probably
been freed.
mount the root file system. If the operator specified the root
file system type in the kernel configuration file, attempt to
mount that file system type on the root device. If the root
file system type was wildcarded (or unspecified), try all of
the file systems statically built into the kernel until one
succeeds. If no file systems succeed, return an error. The
system will recover from this condition.
- Implement vfs_getopsbyname(). This function returns the file
system ops vector given a file system name.
queue.h list/queue head initializer macros. mountlist was converted so
that panics (or other reboots) early on in kernel startup don't cause
sys_sync() to croak. vnode_free_list was converted because it was nearby.