doing a cpu_set_kpc(), just pass the entry point and argument all
the way down the fork path starting with fork1(). In order to
avoid special-casing the normal fork in every cpu_fork(), MI code
passes down child_return() and the child process pointer explicitly.
This fixes a race condition on multiprocessor systems; a CPU could
grab the newly created processes (which has been placed on a run queue)
before cpu_set_kpc() would be performed.
- Change ktrace interface to pass in the current process, rather than
p->p_tracep, since the various ktr* function need curproc anyway.
- Add curproc as a parameter to mi_switch() since all callers had it
handy anyway.
- Add a second proc argument for inferior() since callers all had
curproc handy.
Also, miscellaneous cleanups in ktrace:
- ktrace now always uses file-based, rather than vnode-based I/O
(simplifies, increases type safety); eliminate KTRFLAG_FD & KTRFAC_FD.
Do non-blocking I/O, and yield a finite number of times when receiving
EWOULDBLOCK before giving up.
- move code duplicated between sys_fktrace and sys_ktrace into ktrace_common.
- simplify interface to ktrwrite()
state into global and per-CPU scheduler state:
- Global state: sched_qs (run queues), sched_whichqs (bitmap
of non-empty run queues), sched_slpque (sleep queues).
NOTE: These may collectively move into a struct schedstate
at some point in the future.
- Per-CPU state, struct schedstate_percpu: spc_runtime
(time process on this CPU started running), spc_flags
(replaces struct proc's p_schedflags), and
spc_curpriority (usrpri of processes on this CPU).
- Every platform must now supply a struct cpu_info and
a curcpu() macro. Simplify existing cpu_info declarations
where appropriate.
- All references to per-CPU scheduler state now made through
curcpu(). NOTE: this will likely be adjusted in the future
after further changes to struct proc are made.
Tested on i386 and Alpha. Changes are mostly mechanical, but apologies
in advance if it doesn't compile on a particular platform.
which indicates that the process is actually running on a
processor. Test against SONPROC as appropriate rather than
combinations of SRUN and curproc. Update all context switch code
to properly set SONPROC when the process becomes the current
process on the CPU.
it to determine the boot device: mvme68k, pc532, macppc, ofppc. Those
platforms should be changed to use device_register(). In the mean time,
those ports defined __BROKEN_DK_ESTABLISH.
contains the values __SIMPLELOCK_LOCKED and __SIMPLELOCK_UNLOCKED, which
replace the old SIMPLELOCK_LOCKED and SIMPLELOCK_UNLOCKED. These files
are also required to supply inline functions __cpu_simple_lock(),
__cpu_simple_lock_try(), and __cpu_simple_unlock() if locking is to be
supported on that platform (i.e. if MULTIPROCESSOR is defined in the
_KERNEL case). Change these functions to take an int * (&alp->lock_data)
rather than the struct simplelock * itself.
These changes make it possible for userland to use the locking primitives
by including <machine/lock.h>.
* Remove the casts to vaddr_t from the round_page() and trunc_page() macros to
make them type-generic, which is necessary i.e. to operate on file offsets
without truncating them.
* In due course, cast pointer arguments to these macros to an appropriate
integral type (paddr_t, vaddr_t).
Originally done by Chuck Silvers, updated by myself.
timeout()/untimeout() API:
- Clients supply callout handle storage, thus eliminating problems of
resource allocation.
- Insertion and removal of callouts is constant time, important as
this facility is used quite a lot in the kernel.
The old timeout()/untimeout() API has been removed from the kernel.
These changes add support for:
o The MI VMEbus framework on both MVME147 and MVME167.
o Enhancements to the existing MD bus_space(9) implementation.
o Most of the bus_dma(9) API.
so that the right entries get added to dev_name2blk[]. Needed for / on RAID.
(Whoops! I missed checking these in when adding the RAID_AUTOCONFIG stuff.)
"To fully support self-modifying code in any situation, it is imperative that
a CPUSHA intrcution is executed before the execution of the first self-modified
instruction. The CPUSHA instruction has the effect of ensuring that there is
no stale data iin memory, the pipeline is flushed, and instruction prefetches
are repeated and taken from external memory."
I verified that this is the only way (I can think of) to make the sigtramp
regression test work on 68040. doing cpushl dc; cinvl ic; over the affected
address range, then nop (to synchronize the pipeline) is not enough; apparently
the nop does not FLUSH the pipeline and prefetch...
Note that the 68060 UM has copied the above cited passage, but in fact this is
not true. This might be connected to the fact that the 68060 does ensure
memory access order under most conditions.
remove GENERIC.v6 file (as it is part of GENERIC now).
"faith" interface is commented out by default as it is not really for
general use.
IPsec items are commented out as well, though we can enable "options IPSEC"
without export-related issue ("options IPSEC" will enable authentication
portion only). We may need to think about it again.
if you have problem compiling with INET6 on archs I do not have access to,
please contact me.
XXX what to do with arch/arm32/SHARK{,.v6}?