64 bit block pointers, extended attribute storage, and a few
other things.
This commit does not yet include the code to manipulate the extended
storage (for e.g. ACLs), this will be done later.
Originally written by Kirk McKusick and Network Associates Laboratories for
FreeBSD.
superblock. Avoids false positives should fsck_ffs be run on a filesystem
that was created after the UFS2 code has been merged.
This commit is mostly a forward compatibility patch that can be pulled
up in to the 1.6 branch.
From Kirk Mckusick in FreeBSD (setup.c rev. 1.30). Original commit message:
========
When checking the alternate superblock, we used to copy any fields
that might have changed, then did a byte-by-byte comparison with
the alternate. If any unused fields got used, they had to be added
to the exception list. Such changes caused too many false alarms.
So, I have changed the comparison algorithm to compare a selected
set of fields that are not expected to change. This new algorithm
causes far fewer false hits and still does a good job of detecting
problems when they have really occurred. In particular, this change
should ease the transition to kernels supporting UFS2 which make
some significant changes to the superblock.
Sponsored by: DARPA, NAI Labs
========
This is the bulk of PR #17345
The general approach is to use a run time deteriminable value
for DIRBLKSIZ. Additional allowances are included for using
MAXSYMLINKLEN with FS_42INODEFMT and a shift in the cylinder group
cluster summary count array. Support is added for managing
the Apple UFS volume label.
* There is no -indent option to .Bd or .Bl, although you would
never know that from its frequent use in this tree. There is a
"-offset indent" combination that makes sense, and you can certainly
say "-width indent".
* Also, you can't markup the -width option argument, tho you CAN
use a callable macro. So "-width Ar filename" doesn't make sense,
but either "-width Ar" or "-width filename" does, as might something
like "-width xxfilename" for a little extra space.
* There are a lot of needlessly complex hanging tag macros in man4 used
to create simple item lists. Those should be simplified one of these
days before someone copies and edits yet another man4 page.
- remove the restriction that filesystem must be a regular file
- don't try and read a disklabel
- use `p' (instead of `h') as the index of the last partition
FreeBSD (three commits; the initial work, man page updates, and a fix
to ffs_reload()), with the following differences:
- Be consistent between newfs(8) and tunefs(8) as to the options which
set and control the tuning parameters for this work (avgfilesize & avgfpdir)
- Use u_int16_t instead of u_int8_t to keep track of the number of
contiguous directories (suggested by Chuck Silvers)
- Work within our FFS_EI framework
- Ensure that fs->fs_maxclusters and fs->fs_contigdirs don't point to
the same area of memory
The new algorithm has a marked performance increase, especially when
performing tasks such as untarring pkgsrc.tar.gz, etc.
The original FreeBSD commit messages are attached:
=====
mckusick 2001/04/10 01:39:00 PDT
Directory layout preference improvements from Grigoriy Orlov <gluk@ptci.ru>.
His description of the problem and solution follow. My own tests show
speedups on typical filesystem intensive workloads of 5% to 12% which
is very impressive considering the small amount of code change involved.
------
One day I noticed that some file operations run much faster on
small file systems then on big ones. I've looked at the ffs
algorithms, thought about them, and redesigned the dirpref algorithm.
First I want to describe the results of my tests. These results are old
and I have improved the algorithm after these tests were done. Nevertheless
they show how big the perfomance speedup may be. I have done two file/directory
intensive tests on a two OpenBSD systems with old and new dirpref algorithm.
The first test is "tar -xzf ports.tar.gz", the second is "rm -rf ports".
The ports.tar.gz file is the ports collection from the OpenBSD 2.8 release.
It contains 6596 directories and 13868 files. The test systems are:
1. Celeron-450, 128Mb, two IDE drives, the system at wd0, file system for
test is at wd1. Size of test file system is 8 Gb, number of cg=991,
size of cg is 8m, block size = 8k, fragment size = 1k OpenBSD-current
from Dec 2000 with BUFCACHEPERCENT=35
2. PIII-600, 128Mb, two IBM DTLA-307045 IDE drives at i815e, the system
at wd0, file system for test is at wd1. Size of test file system is 40 Gb,
number of cg=5324, size of cg is 8m, block size = 8k, fragment size = 1k
OpenBSD-current from Dec 2000 with BUFCACHEPERCENT=50
You can get more info about the test systems and methods at:
http://www.ptci.ru/gluk/dirpref/old/dirpref.html
Test Results
tar -xzf ports.tar.gz rm -rf ports
mode old dirpref new dirpref speedup old dirprefnew dirpref speedup
First system
normal 667 472 1.41 477 331 1.44
async 285 144 1.98 130 14 9.29
sync 768 616 1.25 477 334 1.43
softdep 413 252 1.64 241 38 6.34
Second system
normal 329 81 4.06 263.5 93.5 2.81
async 302 25.7 11.75 112 2.26 49.56
sync 281 57.0 4.93 263 90.5 2.9
softdep 341 40.6 8.4 284 4.76 59.66
"old dirpref" and "new dirpref" columns give a test time in seconds.
speedup - speed increasement in times, ie. old dirpref / new dirpref.
------
Algorithm description
The old dirpref algorithm is described in comments:
/*
* Find a cylinder to place a directory.
*
* The policy implemented by this algorithm is to select from
* among those cylinder groups with above the average number of
* free inodes, the one with the smallest number of directories.
*/
A new directory is allocated in a different cylinder groups than its
parent directory resulting in a directory tree that is spreaded across
all the cylinder groups. This spreading out results in a non-optimal
access to the directories and files. When we have a small filesystem
it is not a problem but when the filesystem is big then perfomance
degradation becomes very apparent.
What I mean by a big file system ?
1. A big filesystem is a filesystem which occupy 20-30 or more percent
of total drive space, i.e. first and last cylinder are physically
located relatively far from each other.
2. It has a relatively large number of cylinder groups, for example
more cylinder groups than 50% of the buffers in the buffer cache.
The first results in long access times, while the second results in
many buffers being used by metadata operations. Such operations use
cylinder group blocks and on-disk inode blocks. The cylinder group
block (fs->fs_cblkno) contains struct cg, inode and block bit maps.
It is 2k in size for the default filesystem parameters. If new and
parent directories are located in different cylinder groups then the
system performs more input/output operations and uses more buffers.
On filesystems with many cylinder groups, lots of cache buffers are
used for metadata operations.
My solution for this problem is very simple. I allocate many directories
in one cylinder group. I also do some things, so that the new allocation
method does not cause excessive fragmentation and all directory inodes
will not be located at a location far from its file's inodes and data.
The algorithm is:
/*
* Find a cylinder group to place a directory.
*
* The policy implemented by this algorithm is to allocate a
* directory inode in the same cylinder group as its parent
* directory, but also to reserve space for its files inodes
* and data. Restrict the number of directories which may be
* allocated one after another in the same cylinder group
* without intervening allocation of files.
*
* If we allocate a first level directory then force allocation
* in another cylinder group.
*/
My early versions of dirpref give me a good results for a wide range of
file operations and different filesystem capacities except one case:
those applications that create their entire directory structure first
and only later fill this structure with files.
My solution for such and similar cases is to limit a number of
directories which may be created one after another in the same cylinder
group without intervening file creations. For this purpose, I allocate
an array of counters at mount time. This array is linked to the superblock
fs->fs_contigdirs[cg]. Each time a directory is created the counter
increases and each time a file is created the counter decreases. A 60Gb
filesystem with 8mb/cg requires 10kb of memory for the counters array.
The maxcontigdirs is a maximum number of directories which may be created
without an intervening file creation. I found in my tests that the best
performance occurs when I restrict the number of directories in one cylinder
group such that all its files may be located in the same cylinder group.
There may be some deterioration in performance if all the file inodes
are in the same cylinder group as its containing directory, but their
data partially resides in a different cylinder group. The maxcontigdirs
value is calculated to try to prevent this condition. Since there is
no way to know how many files and directories will be allocated later
I added two optimization parameters in superblock/tunefs. They are:
int32_t fs_avgfilesize; /* expected average file size */
int32_t fs_avgfpdir; /* expected # of files per directory */
These parameters have reasonable defaults but may be tweeked for special
uses of a filesystem. They are only necessary in rare cases like better
tuning a filesystem being used to store a squid cache.
I have been using this algorithm for about 3 months. I have done
a lot of testing on filesystems with different capacities, average
filesize, average number of files per directory, and so on. I think
this algorithm has no negative impact on filesystem perfomance. It
works better than the default one in all cases. The new dirpref
will greatly improve untarring/removing/coping of big directories,
decrease load on cvs servers and much more. The new dirpref doesn't
speedup a compilation process, but also doesn't slow it down.
Obtained from: Grigoriy Orlov <gluk@ptci.ru>
=====
=====
iedowse 2001/04/23 17:37:17 PDT
Pre-dirpref versions of fsck may zero out the new superblock fields
fs_contigdirs, fs_avgfilesize and fs_avgfpdir. This could cause
panics if these fields were zeroed while a filesystem was mounted
read-only, and then remounted read-write.
Add code to ffs_reload() which copies the fs_contigdirs pointer
from the previous superblock, and reinitialises fs_avgf* if necessary.
Reviewed by: mckusick
=====
=====
nik 2001/04/10 03:36:44 PDT
Add information about the new options to newfs and tunefs which set the
expected average file size and number of files per directory. Could do
with some fleshing out.
=====
in an effort to maintain compatibility with freebsd/openbsd/whatever,
i'm attempting to get the superblock format in sync, and freebsd uses
the int32_t at this position for `fs_pendinginodes'.
if we ever decide to implement fscktime functionality, we'll:
a) make sure to liaise with the other projects to reserve the same
spare field
b) actually implement the code this time ...
(this is also preparing us for other changes, like the new dirpref code)
cylinder groups to work correctly, with minor modifications by me to work
with our FFS_EI code. From the FreeBSD commit message:
The ffs superblock includes a 128-byte region for use by temporary
in-core pointers to summary information. An array in this region
(fs_csp) could overflow on filesystems with a very large number of
cylinder groups (~16000 on i386 with 8k blocks). When this happens,
other fields in the superblock get corrupted, and fsck refuses to
check the filesystem.
Solve this problem by replacing the fs_csp array in 'struct fs'
with a single pointer, and add padding to keep the length of the
128-byte region fixed. Update the kernel and userland utilities
to use just this single pointer.
With this change, the kernel no longer makes use of the superblock
fields 'fs_csshift' and 'fs_csmask'. Add a comment to newfs/mkfs.c
to indicate that these fields must be calculated for compatibility
with older kernels.
Reviewed by: mckusick
determine the endianness of the `struct fs *o' superblock from o->fs_magic
and set needswap as necessary, rather than trusting the caller to get
it right. invariably, almost every caller of ffs_sb_swap() was calling it
with ns set to the wrong value for ns anyway!
ansi KNF ffs_bswap.c declarations whilst here.
this fixes all sorts of problems when trying to use other-endian file systems,
notably the kernel trying to access memory *way* off, possibly corrupting or
panicing, and userland programs SEGVing and/or corrupting things (e.g,
"fsck_ffs -B" to swap a file system endianness).
whilst the previous rev of ffs_bswap.c (1.10, 2000/12/23) made this problem
worse, i suspect that the problem was always there and previous versions
just happened not to trash things at the wrong time.
FFS_EI should now be a lot more stable.
the current in-core master superblock, and fix them up if
they're incorrect. Move the code that writes the alternate
superblocks if (cvtlevel || doswap) into pass 5 for efficiency.
Reviewd by Charles Hannum, and used by me to fix up a curdled
file system.
Some years ago I made it O(n^2).
Someone helpfully made it O(n^4) again.
Today I'm making it O(n).
If that's not good enough, I don't know what else to do. B-)
Technical details:
* The graph traversal in propagate() is modified to be able to start from any
point in the tree. To handle certain exceptional cases, it is also modified
to work in two passes, marking the tree with a special tag and then changing
it to DFOUND.
* The reconnect case now modifies the child/sibling pointers and calls
propagate() to propagate the connection state starting with the reconnected
directory.
Pray that you never encounter a file system trashed enough for this to matter.
too damn small) by setting a minimum (1024) and maximum (maxino + 1). This
prevents certain operations getting REALLY slow when -b is used, and also
avoids overallocating memory if the superblock is hosed.
Also, be a bit more conservative with the clean flag: don't mark the FS
clean when we know there may still be errors (user anserwed 'n' to
a question, or fsck says "you must rerun fsck").
Fix a bug in fsck_ffs where if a directory somehow develops a hole
(that is a block pointer that has a value of zero), fsck would give the
filesystem a clean bill of health, but the kernel would panic when
accessing the directory with the hole. Fsck now checks for holes
in directories. If found in preen mode, fsck fails. In manual
mode, it can be directed to shorten the directory to the beginning of
the hole. A more complete solution would be to allocate a block to fill
the hole. However, this is a lot more work for a `cannot happen' error,
so the extra effort seems unwarranted.
- added missing prototypes, and made local functions static
- removed parallel preening code; this is part of fsck(8)
- use printing utilities from fsck(8)
- Makefile does not make links to fsck and fsck.8
- removed -l maxparallel option. It has no meaning anymore.
to fsck_ffs, so that in the future 'fsck' can be a wrapper than invokes
appropriate filesystem-specific checker programs. For now, the only
user-visible change is that the names have changed in the manual page
and in error messages; fsck and fsck.8 are now links to fsck_ffs and
fsck_ffs.8, until the rest of the transition is complete.
semantics. now:
(1) dirty file systems will always be checked; nothing new there.
(2) if not '-f' clean file systems will _NEVER_ be checked,
i.e. they won't be checked even if -p isn't specified. This
allows one to 'fsck -p ; fsck' to preen, then clean up
anything that 'fsck -p' barfs on, without waiting for the
clean file systems to be checked again.
(3) if '-f' clean file systems will ALWAYS be checked. This
allows people to put 'fsck -fp' into /etc/rc on systems
where they're leery of the FS clean flag state, need
the extra reliability, and can afford time 'wasted'
in checks.
The assumption made here is that if a file system is marked clean, it
_IS CLEAN_, really, and shouldn't be checked unless fsck is explicitly
told to (with -f). This should be a valid assumption, but may not be in
the presence of file system bugs. Documentation updated to note '-f'.
or not. this allows you to use this fsck and... reboot your system;
otherwise it would inf-loop rebooting and marking the FS clean,
which would then mark the fs modified, cause a reboot, etc.