1) Move core entropy-pool code and source/sink/sample management code
to sys/kern from sys/dev.
2) Remove use of NRND as test for presence of entropy-pool code throughout
source tree.
3) Remove use of RND_ENABLED in device drivers as microoptimization to
avoid expensive operations on disabled entropy sources; make the
rnd_add calls do this directly so all callers benefit.
4) Fix bug in recent rnd_add_data()/rnd_add_uint32() changes that might
have lead to slight entropy overestimation for some sources.
5) Add new source types for environmental sensors, power sensors, VM
system events, and skew between clocks, with a sample implementation
for each.
ok releng to go in before the branch due to the difficulty of later
pullup (widespread #ifdef removal and moved files). Tested with release
builds on amd64 and evbarm and live testing on amd64.
implementation. Rewrite pseudodevice code to use cprng_strong(9).
The new pseudodevice is cloning, so each caller gets bits from a stream
generated with its own key. Users of /dev/urandom get their generators
keyed on a "best effort" basis -- the kernel will rekey generators
whenever the entropy pool hits the high water mark -- while users of
/dev/random get their generators rekeyed every time key-length bits
are output.
The underlying cprng_strong API can use AES-256 or AES-128, but we use
AES-128 because of concerns about related-key attacks on AES-256. This
improves performance (and reduces entropy pool depletion) significantly
for users of /dev/urandom but does cause users of /dev/random to rekey
twice as often.
Also fixes various bugs (including some missing locking and a reseed-counter
overflow in the CTR_DRBG code) found while testing this.
For long reads, this generator is approximately 20 times as fast as the
old generator (dd with bs=64K yields 53MB/sec on 2Ghz Core2 instead of
2.5MB/sec) and also uses a separate mutex per instance so concurrency
is greatly improved. For reads of typical key sizes for modern
cryptosystems (16-32 bytes) performance is about the same as the old
code: a little better for 32 bytes, a little worse for 16 bytes.
source file as the entropy-pool code itself. Move it to std. This
will be cleaned up more when I split the sources up as they should be.
This fixes build breaks on several ports. Thanks to Havard Eidnes for
pointing them out.
<20111022023242.BA26F14A158@mail.netbsd.org>. This change includes
the following:
An initial cleanup and minor reorganization of the entropy pool
code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are
fixed. Some effort is made to accumulate entropy more quickly at
boot time.
A generic interface, "rndsink", is added, for stream generators to
request that they be re-keyed with good quality entropy from the pool
as soon as it is available.
The arc4random()/arc4randbytes() implementation in libkern is
adjusted to use the rndsink interface for rekeying, which helps
address the problem of low-quality keys at boot time.
An implementation of the FIPS 140-2 statistical tests for random
number generator quality is provided (libkern/rngtest.c). This
is based on Greg Rose's implementation from Qualcomm.
A new random stream generator, nist_ctr_drbg, is provided. It is
based on an implementation of the NIST SP800-90 CTR_DRBG by
Henric Jungheim. This generator users AES in a modified counter
mode to generate a backtracking-resistant random stream.
An abstraction layer, "cprng", is provided for in-kernel consumers
of randomness. The arc4random/arc4randbytes API is deprecated for
in-kernel use. It is replaced by "cprng_strong". The current
cprng_fast implementation wraps the existing arc4random
implementation. The current cprng_strong implementation wraps the
new CTR_DRBG implementation. Both interfaces are rekeyed from
the entropy pool automatically at intervals justifiable from best
current cryptographic practice.
In some quick tests, cprng_fast() is about the same speed as
the old arc4randbytes(), and cprng_strong() is about 20% faster
than rnd_extract_data(). Performance is expected to improve.
The AES code in src/crypto/rijndael is no longer an optional
kernel component, as it is required by cprng_strong, which is
not an optional kernel component.
The entropy pool output is subjected to the rngtest tests at
startup time; if it fails, the system will reboot. There is
approximately a 3/10000 chance of a false positive from these
tests. Entropy pool _input_ from hardware random numbers is
subjected to the rngtest tests at attach time, as well as the
FIPS continuous-output test, to detect bad or stuck hardware
RNGs; if any are detected, they are detached, but the system
continues to run.
A problem with rndctl(8) is fixed -- datastructures with
pointers in arrays are no longer passed to userspace (this
was not a security problem, but rather a major issue for
compat32). A new kernel will require a new rndctl.
The sysctl kern.arandom() and kern.urandom() nodes are hooked
up to the new generators, but the /dev/*random pseudodevices
are not, yet.
Manual pages for the new kernel interfaces are forthcoming.
1) because the CS5536 is not associated with a x86 CPU, interrupts are not
ack'ed as it expects so interrupts cannot configured as edge-triggered
(as is expected for a PCIIDE in compat mode)
2) the PATA->SATA bridge ignores the WDC_IDS (interrupt disable bit) so
the PATA IRQ line gets asserted when resetting or running some polled
commands. It also wrongly asserts IRQ when the (nonexistent) slave
device is selected
2) wouldn't be an issue with edge-triggered interrupt because we would
get a spurious interrupt and continue operation, a new interrupt only shows
up when the PATA IRQ line goes low and high again. But because of 1),
we get an unclearable interrupt instead, and the system loops on the
interrupt handler.
To workaround this, introduce a WDC_NO_IDS compile option which runs
all polled commands (including reset) at splbio() and without sleeps,
so that the controller's interrupt is effectively disabled and
won't be reenabled before the interrupt can be cleared.
The conditions triggering this problem are speficic enough to handle
this via a compile-time option; no need for a run-time (e.g. a
config(9), device property or callback to disable interrupts) solution.