some locking and rumpcopy primitives and refactor module building Makefiles
to work with both RUMP and kernel modules. This is first part of adding
support for regular test of zfs on NetBSD to hunt some bugs and make it
stable.
Ok by pooka@.
- Add support for session saving/restoring.
- Add packet logging support (can tcpdump a pseudo-interface).
- Support reload without flushing of sessions; rework some locking.
- Revisit session mangement, replace linking with npf_sentry_t entries.
- Add some counters for statistics, using percpu(9).
- Add IP_DF flag cleansing.
- Fix various bugs; misc clean-up.
- Add proper TCP state tracking as described in Guido van Rooij paper,
plus handle TCP Window Scaling option.
- Completely rework npf_cache_t, reduce granularity, simplify code.
- Add npf_addr_t as an abstraction, amend session handling code, as well
as NAT code et al, to use it. Now design is prepared for IPv6 support.
- Handle IPv4 fragments i.e. perform packet reassembly.
- Add support for IPv4 ID randomization and minimum TTL enforcement.
- Add support for TCP MSS "clamping".
- Random bits for IPv6. Various fixes and clean-up.
- props being NULL is NOT an error and is a condition that all modules
must be prepared to handle
- having this module bomb out for spurious reasons makes this module
difficult to use for testing things
- keep comment update
- keep some KNF
- add a notice for the case when props is NULL
kernel module, and can be helpful to generate sysmon_envsys events
when creating/modifying powerd scripts. This will also be used in an
upcoming series of atf tests for sysmon_envsys itself.
- Add support for bi-directional NAT and redirection / port forwarding.
- Finish filtering on ICMP type/code and add filtering on TCP flags.
- Add support for TCP reset (RST) or ICMP destination unreachable on block.
- Fix a bunch of bugs; misc cleanup.
- Designed to be fully MP-safe and highly efficient.
- Tables/IP sets (hash or red-black tree) for high performance lookups.
- Stateful filtering and Network Address Port Translation (NAPT).
Framework for application level gateways (ALGs).
- Packet inspection engine called n-code processor - inspired by BPF -
supporting generic RISC-like and specific CISC-like instructions for
common patterns (e.g. IPv4 address matching). See npf_ncode(9) manual.
- Convenient userland utility npfctl(8) with npf.conf(8).
NOTE: This is not yet a fully capable alternative to PF or IPFilter.
Further work (support for binat/rdr, return-rst/return-icmp, common ALGs,
state saving/restoring, logging, etc) is in progress.
Thanks a lot to Matt Thomas for various useful comments and code review.
Aye by: board@
Remarks:
1. Native instructions are supported only on Intel. Native support for
other x86 vendors will be investigated. By assumption, AMD and others
use the I/O based approach.
2. The existing code, INTEL_ONDEMAND_CLOCKMOD, must be disabled in
order to use acpicpu(4). Otherwise fatal MSR races may occur.
Unlike with P-states, no attempt is done to disable the existing
implementation.
3. There is no rationale to export controls to user land.
4. Throttling is an artefact from the past. T-states will not be used for
power management per se. For CPU frequency management, P-states are
preferred in all circumstances. No noticeable additional power savings
were observed in various experiments. When the system has been scaled
to the highest (i.e. lowest power) P-state, it is preferable to move
from C0 to deeper C-states than it is to actively throttle the CPU.
5. But T-states need to be implemented for passive cooling via acpitz(4).
As specified by ACPI and Intel documents, these can be used as the
last line of defence against critical thermal conditions. Support
for this will be added later.
Remarks:
1. All processors (x86 or not) for which the vendor has implemented
ACPI I/O access routines are supported. Native instructions are
currently supported only for Intel's "Enhanced Speedstep". Code for
"PowerNow!" (AMD) will be merged later. Native support for VIA's
"PowerSaver" will be investigated.
2. Backwards compatibility with existing userland code is maintained.
Comparable to the case with cpu_idle(9), the ACPI CPU driver
installs alternative functions for the existing sysctl(8) controls.
The "native" behavior (if any) is restored upon detachment.
3. The dynamic nature of ACPI-provided P-states needs more investigation.
The maximum frequency induced (but not forced) by the firmware may
change dynamically. Currently, the sysctl(8) controls error out with
a value larger than the dynamic maximum. The code itself does not
however yet react to the notifications from the firmware by changing
the frequencies in-place. Presumably the system administrator should
be able to choose whether to use dynamic or static frequencies.
accounting. Use wired memory (which can be limited) for meta-data, and
kmem(9) for string allocations.
Close PR/31944. Fix PR/38361 while here. OK ad@.