audio framework
Summary of changes:
* struct audio_params
- remove sw_code, factor, factor_denom, hw_sample_rate,
hw_encoding ,hw_precision, and hw_channels. Conversion information
is conveyed by stream_filter_list_t.
- change the type of sample_rate: u_long -> u_int
- add `validbits,' which represents the valid data size in
precision bits. It is required in order to distinguish 24/32bit
from 24/24bit or 32/32bit.
* audio_hw_if
- add two parameters to set_params()
stream_filter_list_t *pfil, stream_filter_list *rfil
A HW driver should set filter recipes for requested formats
- constify audio_params parameters of trigger_output() and
trigger_input(). They represent audio formats for the hardware.
- make open() and close() optional
- add int (AUMODE_PLAY or AUMODE_RECORD) and audio_params_t parameters
to round_blocksize()
* sw_code is replaced with stream_filter_t.
stream_filer_t converts audio data in an input buffer and writes
into another output buffer unlike sw_code, which converts data in
single buffer.
converters in dev/auconv.c, dev/mulaw.c, dev/aurateconv.c,
dev/tc/bba.c, dev/ic/msm6258.c, and arch/arm/iomd/vidcaudio.c are
reimplemented as stream_filter_t
* MI audio
- audiosetinfo() builds filter pipelines from stream_filter_list_t
filled by audio_hw_if::set_params()
- audiosetinfo() returns with EINVAL if mmapped and set_params()
requests filters
- audio_write(), audio_pint(), and audio_rint() invoke a filter
pipeline.
- ioctl() for FIONREAD, AUDIO_WSEEK, AUDIO_GETIOFFS,
AUDIO_GETOOFFS, and audio_prinfo::{seek,samples} for
AUDIO_GETINFO handle values for a buffer nearest to userland.
* add `struct device *' parameter to ac97_attach()
* all of audio HW drivers follow audio_hw_if and ac97 changes
copyin() or copyout().
uvm_useracc() tells us whether the mapping permissions allow access to
the desired part of an address space, and many callers assume that
this is the same as knowing whether an attempt to access that part of
the address space will succeed. however, access to user space can
fail for reasons other than insufficient permission, most notably that
paging in any non-resident data can fail due to i/o errors. most of
the callers of uvm_useracc() make the above incorrect assumption. the
rest are all misguided optimizations, which optimize for the case
where an operation will fail. we'd rather optimize for operations
succeeding, in which case we should just attempt the access and handle
failures due to insufficient permissions the same way we handle i/o
errors. since there appear to be no good uses of uvm_useracc(), we'll
just remove it.