to four (adding size and direction).
In order for topdown uvm to be an option on ports using PMAP_PREFER,
they will need to "prefer" lower addresses if topdown is being used.
Additionally, at least one port also needs to know the size.
- add a RAS hook in cpu_switch().
- fill in the definition of struct mcontext.
- implement cpu_upcall(), cpu_getmcontext(), cpu_getmcontext() and
cpu_switchto().
- for now, force the right priviledge bits and space regs in setcontext().
- use correct values for __SIMPLELOCK_*.
- move the user stack to start at a multiple of the pthread stack size
so that libpthread can use the sp-masking trick.
use this in mbus_dmamem_map() to fix corruption of DMA memory.
note that this TLB bit is ignored on some CPUs (PA7100 and probably
others of that era), so this doesn't fix the problem in general,
but it does work on newer models and will make things easier later.
precision back to machine-dependent headers. C99 has no strict
requirement which, if any, extended-precision type `long double' must
match, and even between 80-bit formats there are differences in
implementation (m68k vs. x86).
* On arm, consider __VFP_FP__.
* _UC_MACHINE_PC() - access the program counter
* _UC_MACHINE_INTRV() - access the integer return value register
* _UC_MACHINE_SET_PC() - set the program counter (this requires
special handling on some platforms).
breakpoint address before it's used. Currently a no-op on all but sh5.
This is useful on sh5, for example, to mask off the instruction
type encoding in the bottom two address bits, and makes it possible
to do "db> break $rXX" instead of manually munging the address.
by the application, all NetBSD interfaces are made visible, even
if some other feature-test macro (like _POSIX_C_SOURCE) is defined.
<sys/featuretest.h> defined _NETBSD_SOURCE if none of _ANSI_SOURCE,
_POSIX_C_SOURCE and _XOPEN_SOURCE is defined, so as to preserve
existing behaviour.
This has two major advantages:
+ Programs that require non-POSIX facilities but define _POSIX_C_SOURCE
can trivially be overruled by putting -D_NETBSD_SOURCE in their CFLAGS.
+ It makes most of the #ifs simpler, in that they're all now ORs of the
various macros, rather than having checks for (!defined(_ANSI_SOURCE) ||
!defined(_POSIX_C_SOURCE) || !defined(_XOPEN_SOURCE)) all over the place.
I've tried not to change the semantics of the headers in any case where
_NETBSD_SOURCE wasn't defined, but there were some places where the
current semantics were clearly mad, and retaining them was harder than
correcting them. In particular, I've mostly normalised things so that
_ANSI_SOURCE gets you the smallest set of stuff, then _POSIX_C_SOURCE,
_XOPEN_SOURCE and _NETBSD_SOURCE in that order.
Tested by building for vax, encouraged by thorpej, and uncontested in
tech-userlevel for a week.
in struct hppa_cpu_info or anywhere else, now there are just hppa_btlb_*
functions. Added support for machines with split I/D and variable-range
BTLBs. Added support for purging BTLB entries.
to deal with aliasing of regular memory pages, because many processors don't
support it.
Now, the pmap marks all mappings of a page that has any non-equivalent
aliasing and any writable mapping, and the fault handlers watch for this
and flush other mappings out of the TLB and cache before (re)entering a
conflicting mapping.
When a page has non-equivalent aliasing, only one writable mapping at
a time may be in the TLB and cache. If no writable mapping is in the
TLB and cache, any number of read-only mappings may be.
The PA7100LC/PA7300LC fault handlers have not been converted yet.
counters. These counters do not exist on all CPUs, but where they
do exist, can be used for counting events such as dcache misses that
would otherwise be difficult or impossible to instrument by code
inspection or hardware simulation.
pmc(9) is meant to be a general interface. Initially, the Intel XScale
counters are the only ones supported.