NAME
tap - virtual Ethernet device
SYNOPSIS
pseudo-device tap
DESCRIPTION
The tap driver allows the creation and use of virtual Ethernet devices.
Those interfaces appear just as any real Ethernet NIC to the kernel, but
can also be accessed by userland through a character device node in order
to read frames being sent by the system or to inject frames.
In that respect it is very similar to what tun(4) provides, but the added
Ethernet layer allows easy integration with machine emulators or virtual
Ethernet networks through the use of bridge(4) with tunneling.
``Qui tacet consentire videtur.''
disklabels nested inside an MBR "NetBSD" or "386BSD" partition (first
one found is considered authoritative for the disk), or in one of several
known locations for various NetBSD platforms. It can read native or other-
endian disklabels (code is there, but not tested).
If you want to play with this, exercise caution; you can't currently
mountroot on a wedge (setroot() needs some work). Enabled by the
DKWEDGE_METHOD_BSDLABEL kernel option.
infrastructure that allows new ones to be added. The discovery methods
are prioritized, and only one can exist at a given priority.
The DKWEDGE_METHOD_GPT option causes GPT support to be included. GPT is
at priority 0; we prefer GPT above all others.
calls to ensure that the vnode lock state is as expected when the VOP
call is made. Modify vnode_if.src to set the expected state according
to the documenting lock table for each VOP. Modify vnode_if.sh to emit
the checks.
Notes:
- The checks are only performed if the vnode has the VLOCKSWORK bit
set. Some file systems (e.g. specfs) don't even bother with vnode
locks, so of course the checks will fail.
- We can't actually run with VNODE_LOCKDEBUG because there are so many
vnode locking problems, not the least of which is the "use SHARED for
VOP_READ()" issue, which screws things up for the entire call chain.
Inspired by similar changes in OpenBSD, but implemented differently.
produces corrupted binaries when the link_set_* sections extend into another
page after the end of the .text section by using a generated an ldscript that
puts all the link_set_* data into the .text section in the first place.
- pfsync (due to protocol # assignment issues)
- carp (not really a PF portion, but thought important to mention)
- PF and ALTQ are mutually-exclusive. this will be sorted out when
kjc@csl.sony.co.jp updates ALTQ and PF (and API inbetween)
reviewed by matt, christos, perry
torture-test is very welcomed.
to only call pckbc_machdep_cnattach() if this is present. This allows
pckbc_machdep_cnattach() to be omitted entirely on most ports, where it only
returns ENXIO anyway.
The devices with this attribute at the moment are pc(4) on i386 and bebox, and
pckbc on sparc, where pckbc_machdep_cnattach() mysteriously returns 0 rather
than ENXIO.
PR#23470, with minor updates by me. This is only the syscall support
from that PR, for now.
Changes: port over fix from FreeBSD for multicast address generation.
Changed bcopy to memcpy. For now, #ifdef notyet the portions of
kern_uuid.c that are meant to be used by (currently nonexistent) other
things in the kernel. Added syscall to COMPAT_FREEBSD as well, though
that's currently not useful, as any program new enough to use this call
also uses other syscalls we don't (yet) emulate.
* lpt device is defined in MI place (dev/ppbus/files.ppbus), dev/ic/lpt.c
is included there too; dev/ic/lpt.c is not included if ppbus is
configured or if there is alternative platform lpt (like for pc532)
* g/c MD lpt definitions and custom puc/upc attachments,
glue moved to conf/files and dev/pci/files.pci respectively; remove
device lpt definition from dev/isa/files.isa
* add ppbus parport attribute, atppc device attachments, adjust plip and lpt
glue
systems that don't have a dedicated feeper. It's up to MD code to enable
this by having the "audiobell" attribute and calling audiobell() at the
appropriate moment.
Code for making noise in the kernel from Richard Earnshaw. Simple synthesizer
design from the RISC OS Programmer's Reference manual.
clients, and a pseudo-device for userspace access.
The attribute is named `opencrypto'. The pseudo-device is renamed to
"crypto", which has a dependency on "opencrypto". The sys/conf/majors
entry and pseudo-device attach entrypoint are updated to match the
new pseudo-device name.
Fast IPsec (sys/netipsec/files.ipsec) now lists a dependency on the
"opencrypto" attribute. Drivers for crypto accelerators (ubsec,
hifn775x) also pull in opencrypto, as providers of opencrypto transforms.
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.
Uses a hook in spec_strategy() to save data written from a mounted
file system to its block device and a hook in dounmount().
Not enabled by default in any kernel config.
Approved by: Frank van der Linden <fvdl@netbsd.org>
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
Gcc-3.3 produces valid warnings in most cases and uncovers bugs. In the
cases where a variable is known to be initialized, we initialize it and
add: /* XXX: gcc */. If a $MACHINE_ARCH's compiler is busted, it can add
-Wno-uninitialized in the MD Makefile.