first step towards per-device MAXPHYS, and has the beneficial side effect
of allowing clustering to MAXPHYS even on systems that need to run with
a reduced MAXBSIZE to get more metadata buffers.
- Under chroot it displays only the visible filesystems with appropriate paths.
- The statfs f_mntonname gets adjusted to contain the real path from root.
- While was there, fixed a bug in ext2fs, locking problems with vfs_getfsstat(),
and factored out some of the vfsop statfs() code to copy_statfs_info(). This
fixes the problem where some filesystems forgot to set fsid.
- Made coda look more like a normal fs.
are vput()/vrele()d as necessary - some filesystems did use the wrong
one for some ops, and it's just safer to not take the chance
based on suggestion by Bill Studenmund
which uses WILLPUT for member which may be NULL
handle correctly dvp == vp case for WILLPUT members, so this works
for vop_remove, vop_rename
thanks Bill Studenmund for code&comments on this
before the reader woke up - this made the reader loop again, waiting
for another writer, even though there was input available.
Thanks to Jaromir for spotting the real cause and sugesting a solution.
This should fix PR port-sparc64/20283.
(there are still some details to work out) but expect that to go
away soon. To support these basic changes (creation of lfs_putpages,
lfs_gop_write, mods to lfs_balloc) several other changes were made, to
wit:
* Create a writer daemon kernel thread whose purpose is to handle page
writes for the pagedaemon, but which also takes over some of the
functions of lfs_check(). This thread is started the first time an
LFS is mounted.
* Add a "flags" parameter to GOP_SIZE. Current values are
GOP_SIZE_READ, meaning that the call should return the size of the
in-core version of the file, and GOP_SIZE_WRITE, meaning that it
should return the on-disk size. One of GOP_SIZE_READ or
GOP_SIZE_WRITE must be specified.
* Instead of using malloc(...M_WAITOK) for everything, reserve enough
resources to get by and use malloc(...M_NOWAIT), using the reserves if
necessary. Use the pool subsystem for structures small enough that
this is feasible. This also obsoletes LFS_THROTTLE.
And a few that are not strictly necessary:
* Moves the LFS inode extensions off onto a separately allocated
structure; getting closer to LFS as an LKM. "Welcome to 1.6O."
* Unified GOP_ALLOC between FFS and LFS.
* Update LFS copyright headers to correct values.
* Actually cast to unsigned in lfs_shellsort, like the comment says.
* Keep track of which segments were empty before the previous
checkpoint; any segments that pass two checkpoints both dirty and
empty can be summarily cleaned. Do this. Right now lfs_segclean
still works, but this should be turned into an effectless
compatibility syscall.
* do not set *vpp unless successful, otherwise we'd trigger
DIAGNOSTIC panic in lookup(9) on error return
* on error, make sure to free malloc'ed memory and ungetnewvnode() the
previously acquired vnode
this fixes panic on 'tail -f <file> &; ls -l /proc/$!/fd' reported by
Andrew Brown
fix reviewed by Christos Zoulas
malloc types into a structure, a pointer to which is passed around,
instead of an int constant. Allow the limit to be adjusted when the
malloc type is defined, or with a function call, as suggested by
Jonathan Stone.
- Is it ok to convert DTYPE_PIPE to VFIFO and DTYPE_SOCKET to VSOCK?
- XXX: Avoid locking issue in ls -Rl /proc by avoiding curproc
- Does I/O to pipes work?
- XXX: Are there security implications?
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe