- Socket layer becomes MP safe.
- Unix protocols become MP safe.
- Allows protocol processing interrupts to safely block on locks.
- Fixes a number of race conditions.
With much feedback from matt@ and plunky@.
- Add a lot of missing selinit() and seldestroy() calls.
- Merge selwakeup() and selnotify() calls into a single selnotify().
- Add an additional 'events' argument to selnotify() call. It will
indicate which event (POLL_IN, POLL_OUT, etc) happen. If unknown,
zero may be used.
Note: please pass appropriate value of 'events' where possible.
Proposed on: <tech-kern>
- add a comment to explain why:
+ * We start with 1, because 0 doesn't work with linux, which
+ * considers timestamp 0 in a SYN packet as a bug and disables
+ * timestamps.
revision 1.230
date: 2005/06/30 02:58:28; author: christos; state: Exp; lines: +20 -4
Normalize our PAWS code with Free and Open, as mentioned in tech-security.
reviewed by christos@ and matt@.
to _ro_rt. Use rtcache_getrt() to access a route cache's struct
rtentry *.
Introduce struct ifnet->if_dl that always points at the interface
identifier/link-layer address. Make code that treated the first
ifaddr on struct ifnet->if_addrlist as the interface address use
if_dl, instead.
Remove stale debugging code from net/route.c. Move the rtflush()
code into rtcache_clear() and delete rtflush(). Delete rtalloc(),
because nothing uses it any more.
Make ND6_HINT an inline, lowercase subroutine, nd6_hint.
I've done my best to convert IP Filter, the ISO stack, and the
AppleTalk stack to rtcache_getrt(). They compile, but I have not
tested them. I have given the changes to PF, GRE, IPv4 and IPv6
stacks a lot of exercise.
in_pcbbind().
Okay dyoung@.
Note that the network code is another candidate for major cleanup... also
note that this issue is likely to be present in netinet6 code, too.
- don't use void * for pointer arithmetic
- don't try to modify const parameters
A kernel with 'options TCP_SIGNATURE' works as well as it ever did, now.
(ie, clunky, but passable)
the struct tcphdr * argument of tcp_dooptions(). RFC2385 support
(options TCP_SIGNATURE) needs to modify the header during options
processing, and this revision broke it.
OK yamt@.
route_in6, struct route_iso), replacing all caches with a struct
route.
The principle benefit of this change is that all of the protocol
families can benefit from route cache-invalidation, which is
necessary for correct routing. Route-cache invalidation fixes an
ancient PR, kern/3508, at long last; it fixes various other PRs,
also.
Discussions with and ideas from Joerg Sonnenberger influenced this
work tremendously. Of course, all design oversights and bugs are
mine.
DETAILS
1 I added to each address family a pool of sockaddrs. I have
introduced routines for allocating, copying, and duplicating,
and freeing sockaddrs:
struct sockaddr *sockaddr_alloc(sa_family_t af, int flags);
struct sockaddr *sockaddr_copy(struct sockaddr *dst,
const struct sockaddr *src);
struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags);
void sockaddr_free(struct sockaddr *sa);
sockaddr_alloc() returns either a sockaddr from the pool belonging
to the specified family, or NULL if the pool is exhausted. The
returned sockaddr has the right size for that family; sa_family
and sa_len fields are initialized to the family and sockaddr
length---e.g., sa_family = AF_INET and sa_len = sizeof(struct
sockaddr_in). sockaddr_free() puts the given sockaddr back into
its family's pool.
sockaddr_dup() and sockaddr_copy() work analogously to strdup()
and strcpy(), respectively. sockaddr_copy() KASSERTs that the
family of the destination and source sockaddrs are alike.
The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is
passed directly to pool_get(9).
2 I added routines for initializing sockaddrs in each address
family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(),
etc. They are fairly self-explanatory.
3 structs route_in6 and route_iso are no more. All protocol families
use struct route. I have changed the route cache, 'struct route',
so that it does not contain storage space for a sockaddr. Instead,
struct route points to a sockaddr coming from the pool the sockaddr
belongs to. I added a new method to struct route, rtcache_setdst(),
for setting the cache destination:
int rtcache_setdst(struct route *, const struct sockaddr *);
rtcache_setdst() returns 0 on success, or ENOMEM if no memory is
available to create the sockaddr storage.
It is now possible for rtcache_getdst() to return NULL if, say,
rtcache_setdst() failed. I check the return value for NULL
everywhere in the kernel.
4 Each routing domain (struct domain) has a list of live route
caches, dom_rtcache. rtflushall(sa_family_t af) looks up the
domain indicated by 'af', walks the domain's list of route caches
and invalidates each one.
rtcache_init and rtcache_init_noclone lookup ro_dst and store
the result in ro_rt, taking care of the reference counting and
calling the domain specific route cache.
rtcache_free checks if a route was cashed and frees the reference.
rtcache_copy copies ro_dst of the given struct route, checking that
enough space is available and incrementing the reference count of the
cached rtentry if necessary.
rtcache_check validates that the cached route is still up. If it isn't,
it tries to look it up again. Afterwards ro_rt is either a valid again
or NULL.
rtcache_copy is used internally.
Adjust to callers of rtalloc/rtflush in the tree to check the sanity of
ro_dst first (if necessary). If it doesn't fit the expectations, free
the cache, otherwise check if the cached route is still valid. After
that combination, a single check for ro_rt == NULL is enough to decide
whether a new lookup needs to be done with a different ro_dst.
Make the route checking in gre stricter by repeating the loop check
after revalidation.
Remove some unused RADIX_MPATH code in in6_src.c. The logic is slightly
changed here to first validate the route and check RTF_GATEWAY
afterwards. This is sementically equivalent though.
etherip doesn't need sc_route_expire similiar to the gif changes from
dyoung@ earlier.
Based on the earlier patch from dyoung@, reviewed and discussed with
him.
routing caused by stale route caches (struct route). Route caches
are sprinkled throughout PCBs, the IP fast-forwarding table, and
IP tunnel interfaces (gre, gif, stf).
Stale IPv6 and ISO route caches will be treated by separate patches.
Thank you to Christoph Badura for suggesting the general approach
to invalidating route caches that I take here.
Here are the details:
Add hooks to struct domain for tracking and for invalidating each
domain's route caches: dom_rtcache, dom_rtflush, and dom_rtflushall.
Introduce helper subroutines, rtflush(ro) for invalidating a route
cache, rtflushall(family) for invalidating all route caches in a
routing domain, and rtcache(ro) for notifying the domain of a new
cached route.
Chain together all IPv4 route caches where ro_rt != NULL. Provide
in_rtcache() for adding a route to the chain. Provide in_rtflush()
and in_rtflushall() for invalidating IPv4 route caches. In
in_rtflush(), set ro_rt to NULL, and remove the route from the
chain. In in_rtflushall(), walk the chain and remove every route
cache.
In rtrequest1(), call rtflushall() to invalidate route caches when
a route is added.
In gif(4), discard the workaround for stale caches that involves
expiring them every so often.
Replace the pattern 'RTFREE(ro->ro_rt); ro->ro_rt = NULL;' with a
call to rtflush(ro).
Update ipflow_fastforward() and all other users of route caches so
that they expect a cached route, ro->ro_rt, to turn to NULL.
Take care when moving a 'struct route' to rtflush() the source and
to rtcache() the destination.
In domain initializers, use .dom_xxx tags.
KNF here and there.
happen in the TCP stack, this interface calls the specified callback to
handle the situation according to the currently selected congestion
control algorithm.
A new sysctl node was created: net.inet.tcp.congctl.{available,selected}
with obvious meanings.
The old net.inet.tcp.newreno MIB was removed.
The API is discussed in tcp_congctl(9).
In the near future, it will be possible to selected a congestion control
algorithm on a per-socket basis.
Discussed on tech-net and reviewed by <yamt>.
with spl used to protect other allocations and frees, or datastructure
element insertion and removal, in adjacent code.
It is almost unquestionably the case that some of the spl()/splx() calls
added here are superfluous, but it really seems wrong to see:
s=splfoo();
/* frob data structure */
splx(s);
pool_put(x);
and if we think we need to protect the first operation, then it is hard
to see why we should not think we need to protect the next. "Better
safe than sorry".
It is also almost unquestionably the case that I missed some pool
gets/puts from interrupt context with my strategy for finding these
calls; use of PR_NOWAIT is a strong hint that a pool may be used from
interrupt context but many callers in the kernel pass a "can wait/can't
wait" flag down such that my searches might not have found them. One
notable area that needs to be looked at is pf.
See also:
http://mail-index.netbsd.org/tech-kern/2006/07/19/0003.htmlhttp://mail-index.netbsd.org/tech-kern/2006/07/19/0009.html
Both available for IPv4 and IPv6.
Basic implementation test results are available at
http://netbsd-soc.sourceforge.net/projects/ecn/testresults.html.
Work sponsored by the Google Summer of Code project 2006.
Special thanks to Kentaro Kurahone, Allen Briggs and Matt Thomas for their
help, comments and support during the project.
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html
it has to change the mbuf chain. I experience hard hang on a Xen2 domU after
TCP connections have been closed, and a crash has been reported which may be
caused by this too.