- Addresses the issue described in PR/38828.
- Some simplification in threading and sleepq subsystems.
- Eliminates pmap_collect() and, as a side note, allows pmap optimisations.
- Eliminates XS_CTL_DATA_ONSTACK in scsipi code.
- Avoids few scans on LWP list and thus potentially long holds of proc_lock.
- Cuts ~1.5k lines of code. Reduces amd64 kernel size by ~4k.
- Removes __SWAP_BROKEN cases.
Tested on x86, mips, acorn32 (thanks <mpumford>) and partly tested on
acorn26 (thanks to <bjh21>).
Discussed on <tech-kern>, reviewed by <ad>.
activity of other threads will perform the TLB flush for the processes using
emap as a side effect. To track that, global and per-CPU generation numbers
are used. This idea was suggested by Andrew Doran; various improvements to
it by me. Notes:
- For now, zero-copy on pipe is not yet enabled.
- TCP socket code would likely need more work.
- Additional UVM loaning improvements are needed.
Proposed on <tech-kern>, silence there.
Quickly reviewed by <ad>.
to pool_init. Untouched pools are ones that either in arch-specific
code, or aren't initialiased during initial system startup.
Convert struct session, ucred and lockf to pools.
http://mail-index.netbsd.org/source-changes/2003/05/08/0068.html
There were some side-effects that I didn't anticipate, and fixing them
is proving to be more difficult than I thought, do just eject for now.
Maybe one day we can look at this again.
Fixes PR kern/21517.
space is advertised to UVM by making virtual_avail and virtual_end
first-class exported variables by UVM. Machine-dependent code is
responsible for initializing them before main() is called. Anything
that steals KVA must adjust these variables accordingly.
This reduces the number of instances of this info from 3 to 1, and
simplifies the pmap(9) interface by removing the pmap_virtual_space()
function call, and removing two arguments from pmap_steal_memory().
This also eliminates some kludges such as having to burn kernel_map
entries on space used by the kernel and stolen KVA.
This also eliminates use of VM_{MIN,MAX}_KERNEL_ADDRESS from MI code,
this giving MD code greater flexibility over the bounds of the managed
kernel virtual address space if a given port's specific platforms can
vary in this regard (this is especially true of the evb* ports).
* User allocates ZFOD region, but does not actually touch the buffer
to fault in the pages.
* In a loop, user writes this buffer to a network socket, triggering
sosend_loan().
* uvm_loan() calls uvm_loanzero() once for each page in the loaned
region (since the pages have not yet faulted in). This causes a
page to be allocated and zero'd. The result is the kernel spends
a lot of time allocating and zero'ing pages.
This fixes creates a special object which owns a single zero'd page.
This single zero'd page is used to satisfy all loans of non-resident
ZFOD mappings.
Thanks to Allen Briggs for discovering the problem and for providing
an initial patch.
<vm/pglist.h> -> <uvm/uvm_pglist.h>
<vm/vm_inherit.h> -> <uvm/uvm_inherit.h>
<vm/vm_kern.h> -> into <uvm/uvm_extern.h>
<vm/vm_object.h> -> nothing
<vm/vm_pager.h> -> into <uvm/uvm_pager.h>
also includes a bunch of <vm/vm_page.h> include removals (due to redudancy
with <vm/vm.h>), and a scattering of other similar headers.
- break anon related functions out of uvm_amap.c and put them in their own
file (uvm_anon.c). includes break up uvm_anon_init into an amap and an
an anon init function
- ensure that only functions within the amap module access amap structure
fields (add macros to amap api as needed)
UVM was written by chuck cranor <chuck@maria.wustl.edu>, with some
minor portions derived from the old Mach code. i provided some help
getting swap and paging working, and other bug fixes/ideas. chuck
silvers <chuq@chuq.com> also provided some other fixes.
this is the UVM kernel code portion.
this will be KNF'd shortly. :-)