and install ${TOOLDIR}/bin/${MACHINE_GNU_PLATFORM}-disklabel,
${TOOLDIR}/bin/${MACHINE_GNU_PLATFORM}-fdisk by "reaching over" to
the sources in ${NETBSDSRCDIR}/sbin/{disklabel fdisk}/.
To avoid clashes with a build-host's header files, especially on
*BSD, the host-tools versions of fdisk and disklabel search for
#includes such as disklabel.h, disklabel_acorn.h, disklabel_gpt.h,
and bootinfo.h in a new #includes namespace, nbinclude/. That is,
they #include <nbinclude/sys/disklabel.h>, <nbinclude/machine/disklabel.h>,
<nbinclude/sparc64/disklabel.h>, instead of <sys/disklabel.h> and
such. I have also updated the system headers to #include from
nbinclude/-space when HAVE_NBTOOL_CONFIG_H is #defined.
where the printing of `version' is already performed.
This has the benefit of allowing the copyright to be available
via dmesg(8) on platforms which need the `msgbuf' to be setup
in cpu_startup() before printed output is remembered.
- Ffs internal snapshots get compiled in unconditionally.
- File system snapshot device fss(4) added to all kernel configs that
have a disk. Device is commented out on all non-GENERIC kernels.
Reviewed by: Jason Thorpe <thorpej@netbsd.org>
All those kernels have a line for both tun and bridge, and if either is
commented out, tap is commented out also. With the exception of i386's
GENERIC_TINY.
XXX: we _need_ some way of making this more simple.
which bustype should be attached with a specific call to config_found()
(from a "mainbus" or a bus bridge).
Do it for isa/eisa/mca and pci/agp for now. These buses all attach to
an mi interface attribute "isabus", "eisabus" etc., and the autoconf
framework now allows to specify an interface attribute on config_found()
and config_search(), which limits the search of matching config data
to these which attach to that specific attribute.
So we basically have to call config_found_ia(..., "foobus", ...) where
such a bus is attached.
As a consequence, where a "mainbus" or alike also attaches other
devices (eg CPUs) which do not attach to a specific attribute yet,
we need at least pass an attribute name (different from "foobus") so
that the foo bus is not found at these places. This made some minor
changes necessary which are not obviously related to the mentioned buses.
because the Au1500 and/or this board's firmware don't have it to the
right value at bootup, as was previously assumed. Makes USB-host work
on the Au1500, and should cause no change on other boards where it
previously "just worked".
Remove some #if 0'd out setting of FREQ0, since it's not currently
used.
drivers that attach to it. This allows for other host interface chips
that use the same keyboards and mice, such as the ones in the ARM
IOMD20, ARM7500, and SA-1111. The PC-compatible driver is still
called pckbc(4), and the new abstraction layer is "pckbport", so the
child devices have moved from sys/dev/pckbc to sys/dev/pckbport, which
also contains some code shared between all host controllers. To avoid
incompatibility, pckbdreg.h is still installed in
/usr/include/dev/pckbc.
In theory, this shouldn't cause any behavioural changes in the drivers
concerned. Thy just use rather more function pointers than before. Tested
on i386 and (with a new host driver) acorn32. Compiled on several other
affected architectures.
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.