in6_purgeaddr (in6_unlink_ifa) itself unrefernces a prefix entry and calls
nd6_prelist_remove if the counter becomes 0, so callers doesn't need to
handle the reference counting.
Performance-sensitive paths (sending/forwarding packets) call just one
reader lock. This is a trade-off between performance impact vs. the amount
of efforts; if we want to remove the reader lock, we need huge amount of
works including destroying objects with psz/psref in softint, for example.
See the following descriptions for details.
Proposed on tech-kern and tech-net
Overview
--------
We protect the routing table with a rwock and protect
rtcaches with another rwlock. Each rtentry is protected
from being freed or updated via reference counting and psref.
Global rwlocks
--------------
There are two rwlocks; one for the routing table (rt_lock) and
the other for rtcaches (rtcache_lock). rtcache_lock covers
all existing rtcaches; there may have room for optimizations
(future work).
The locking order is rtcache_lock first and rt_lock is next.
rtentry references
------------------
References to an rtentry is managed with reference counting
and psref. Either of the two mechanisms is used depending on
where a rtentry is obtained. Reference counting is used when
we obtain a rtentry from the routing table directly via
rtalloc1 and rtrequest{,1} while psref is used when we obtain
a rtentry from a rtcache via rtcache_* APIs. In both cases,
a caller can sleep/block with holding an obtained rtentry.
The reasons why we use two different mechanisms are (i) only
using reference counting hurts the performance due to atomic
instructions (rtcache case) (ii) ease of implementation;
applying psref to APIs such rtaloc1 and rtrequest{,1} requires
additional works (adding a local variable and an argument).
We will finally migrate to use only psref but we can do it
when we have a lockless routing table alternative.
Reference counting for rtentry
------------------------------
rt_refcnt now doesn't count permanent references such as for
rt_timers and rtcaches, instead it is used only for temporal
references when obtaining a rtentry via rtalloc1 and rtrequest{,1}.
We can do so because destroying a rtentry always involves
removing references of rt_timers and rtcaches to the rtentry
and we don't need to track such references. This also makes
it easy to wait for readers to release references on deleting
or updating a rtentry, i.e., we can simply wait until the
reference counter is 0 or 1. (If there are permanent references
the counter can be arbitrary.)
rt_ref increments a reference counter of a rtentry and rt_unref
decrements it. rt_ref is called inside APIs (rtalloc1 and
rtrequest{,1} so users don't need to care about it while
users must call rt_unref to an obtained rtentry after using it.
rtfree is removed and we use rt_unref and rt_free instead.
rt_unref now just decrements the counter of a given rtentry
and rt_free just tries to destroy a given rtentry.
See the next section for destructions of rtentries by rt_free.
Destructions of rtentries
-------------------------
We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE);
the original implementation can destroy in any rtfree where it's
the last reference. If we use reference counting or psref, it's
easy to understand if the place that a rtentry is destroyed is
fixed.
rt_free waits for references to a given rtentry to be released
before actually destroying the rtentry. rt_free uses a condition
variable (cv_wait) (and psref_target_destroy for psref) to wait.
Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint
that we cannot use cv_wait. In that case, we have to defer the
destruction to a workqueue.
rtentry#rt_cv, rtentry#rt_psref and global variables
(see rt_free_global) are added to conduct the procedure.
Updates of rtentries
--------------------
One difficulty to use refcnt/psref instead of rwlock for rtentry
is updates of rtentries. We need an additional mechanism to
prevent readers from seeing inconsistency of a rtentry being
updated.
We introduce RTF_UPDATING flag to rtentries that are updating.
While the flag is set to a rtentry, users cannot acquire the
rtentry. By doing so, we avoid users to see inconsistent
rtentries.
There are two options when a user tries to acquire a rtentry
with the RTF_UPDATING flag; if a user runs in softint context
the user fails to acquire a rtentry (NULL is returned).
Otherwise a user waits until the update completes by waiting
on cv.
The procedure of a updater is simpler to destruction of
a rtentry. Wait on cv (and psref) and after all readers left,
proceed with the update.
Global variables (see rt_update_global) are added to conduct
the procedure.
Currently we apply the mechanism to only RTM_CHANGE in
rtsock.c. We would have to apply other codes. See
"Known issues" section.
psref for rtentry
-----------------
When we obtain a rtentry from a rtcache via rtcache_* APIs,
psref is used to reference to the rtentry.
rtcache_ref acquires a reference to a rtentry with psref
and rtcache_unref releases the reference after using it.
rtcache_ref is called inside rtcache_* APIs and users don't
need to take care of it while users must call rtcache_unref
to release the reference.
struct psref and int bound that is needed for psref is
embedded into struct route. By doing so we don't need to
add local variables and additional argument to APIs.
However this adds another constraint to psref other than
reference counting one's; holding a reference of an rtentry
via a rtcache is allowed by just one caller at the same time.
So we must not acquire a rtentry via a rtcache twice and
avoid a recursive use of a rtcache. And also a rtcache must
be arranged to be used by a LWP/softint at the same time
somehow. For IP forwarding case, we have per-CPU rtcaches
used in softint so the constraint is guaranteed. For a h
rtcache of a PCB case, the constraint is guaranteed by the
solock of each PCB. Any other cases (pf, ipf, stf and ipsec)
are currently guaranteed by only the existence of the global
locks (softnet_lock and/or KERNEL_LOCK). If we've found the
cases that we cannot guarantee the constraint, we would need
to introduce other rtcache APIs that use simple reference
counting.
psref of rtcache is created with IPL_SOFTNET and so rtcache
shouldn't used at an IPL higher than IPL_SOFTNET.
Note that rtcache_free is used to invalidate a given rtcache.
We don't need another care by my change; just keep them as
they are.
Performance impact
------------------
When NET_MPSAFE is disabled the performance drop is 3% while
when it's enabled the drop is increased to 11%. The difference
comes from that currently we don't take any global locks and
don't use psref if NET_MPSAFE is disabled.
We can optimize the performance of the case of NET_MPSAFE
on by reducing lookups of rtcache that uses psref;
currently we do two lookups but we should be able to trim
one of two. This is a future work.
Known issues
------------
There are two known issues to be solved; one is that
a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit).
We need to prevent new references during the update. Or
we may be able to remove the code (perhaps, need more
investigations).
The other is rtredirect that updates a rtentry. We need
to apply our update mechanism, however it's not easy because
rtredirect is called in softint and we cannot apply our
mechanism simply. One solution is to defer rtredirect to
a workqueue but it requires some code restructuring.
in6_selectsrc returned a pointer to in6_addr that wan't guaranteed to be
safe by pserialize (or psref), which was racy. Let callers pass a pointer
to in6_addr and in6_selectsrc copy a result to it inside pserialize
critical sections.
If NET_MPSAFE is enabled, don't hold KERNEL_LOCK and softnet_lock in
part of the network stack such as IP forwarding paths. The aim of the
change is to make it easy to test the network stack without the locks
and reduce our local diffs.
By default (i.e., if NET_MPSAFE isn't enabled), the locks are held
as they used to be.
Reviewed by knakahara@
This change makes struct ifaddr and its variants (in_ifaddr and in6_ifaddr)
MP-safe by using pserialize and psref. At this moment, pserialize_perform
and psref_target_destroy are disabled because (1) we don't need them
because of softnet_lock (2) they cause a deadlock because of softnet_lock.
So we'll enable them when we remove softnet_lock in the future.
Adding and deleting IP addresses aren't serialized with other network
opeartions, e.g., forwarding packets. So if we add or delete an IP
address under network load, a kernel panic may happen on manipulating
network-related shared objects such as rtentry and rtcache.
To avoid such panicks, we still need to hold softnet_lock in in_control
and in6_control that are called via ioctl and do network-related operations
including IP address additions/deletions.
Fix PR kern/51356
The change also prevents arp_dad_timer/nd6_dad_timer from running if
arp_dad_stop/nd6_dad_stop is called, which makes sure that callout_reset
won't be called during callout_halt.
Addresses of an interface (struct ifaddr) have a (reverse) pointer of an
interface object (ifa->ifa_ifp). If the addresses are surely freed when
their interface is destroyed, the pointer is always valid and we don't
need a tweak of replacing the pointer to if_index like mbuf.
In order to make sure the assumption, the following changes are required:
- Deactivate the interface at the firstish of if_detach. This prevents
in6_unlink_ifa from saving multicast addresses (wrongly)
- Invalidate rtcache(s) and clear a rtentry referencing an address on
RTM_DELETE. rtcache(s) may delay freeing an address
- Replace callout_stop with callout_halt of DAD timers to ensure stopping
such timers in if_detach
To this end, callers need to pass struct psref to the functions
and the fuctions acquire a reference of ifp with it. In some cases,
we can simply use if_get_byindex, however, in other cases
(say rt->rt_ifp and ia->ifa_ifp), we have no MP-safe way for now.
In order to take a reference anyway we use non MP-safe function
if_acquire_NOMPSAFE for the latter cases. They should be fixed in
the future somehow.
The motivation is the same as the mbuf's rcvif case; avoid having a pointer
of an ifnet object in ip_moptions and ip6_moptions, which is not MP-safe.
ip_moptions and ip6_moptions can be stored in a PCB for inet or inet6
that's life time is different from ifnet one and so an ifnet object can be
disappeared anytime we get it via them. Thus we need to look up an ifnet
object by if_index every time for safe.
Having a pointer of an interface in a mbuf isn't safe if we remove big
kernel locks; an interface object (ifnet) can be destroyed anytime in any
packet processing and accessing such object via a pointer is racy. Instead
we have to get an object from the interface collection (ifindex2ifnet) via
an interface index (if_index) that is stored to a mbuf instead of an
pointer.
The change provides two APIs: m_{get,put}_rcvif_psref that use psref(9)
for sleep-able critical sections and m_{get,put}_rcvif that use
pserialize(9) for other critical sections. The change also adds another
API called m_get_rcvif_NOMPSAFE, that is NOT MP-safe and for transition
moratorium, i.e., it is intended to be used for places where are not
planned to be MP-ified soon.
The change adds some overhead due to psref to performance sensitive paths,
however the overhead is not serious, 2% down at worst.
Proposed on tech-kern and tech-net.
The API is used to set (or reset) a received interface of a mbuf.
They are counterpart of m_get_rcvif, which will come in another
commit, hide internal of rcvif operation, and reduce the diff of
the upcoming change.
No functional change.
By this change, nexthop caches (IP-MAC address pair) are not stored
in the routing table anymore. Instead nexthop caches are stored in
each network interface; we already have lltable/llentry data structure
for this purpose. This change also obsoletes the concept of cloning/cloned
routes. Cloned routes no longer exist while cloning routes still exist
with renamed to connected routes.
Noticeable changes are:
- Nexthop caches aren't listed in route show/netstat -r
- sysctl(NET_RT_DUMP) doesn't return them
- If RTF_LLDATA is specified, it returns nexthop caches
- Several definitions of routing flags and messages are removed
- RTF_CLONING, RTF_XRESOLVE, RTF_LLINFO, RTF_CLONED and RTM_RESOLVE
- RTF_CONNECTED is added
- It has the same value of RTF_CLONING for backward compatibility
- route's -xresolve, -[no]cloned and -llinfo options are removed
- -[no]cloning remains because it seems there are users
- -[no]connected is introduced and recommended
to be used instead of -[no]cloning
- route show/netstat -r drops some flags
- 'L' and 'c' are not seen anymore
- 'C' now indicates a connected route
- Gateway value of a route of an interface address is now not
a L2 address but "link#N" like a connected (cloning) route
- Proxy ARP: "arp -s ... pub" doesn't create a route
You can know details of behavior changes by seeing diffs under tests/.
Proposed on tech-net and tech-kern:
http://mail-index.netbsd.org/tech-net/2016/03/11/msg005701.html
lltable and llentry were introduced to replace ARP cache data structure
for further restructuring of the routing table: L2 nexthop cache
separation. This change replaces the NDP cache data structure
(llinfo_nd6) with them as well as ARP.
One noticeable change is for neighbor cache GC mechanism that was
introduced to prevent IPv6 DoS attacks. net.inet6.ip6.neighborgcthresh
was the max number of caches that we store in the system. After
introducing lltable/llentry, the value is changed to be per-interface
basis because lltable/llentry stores neighbor caches in each interface
separately. And the change brings one degradation; the old GC mechanism
dropped exceeded packets based on LRU while the new implementation drops
packets in order from the beginning of lltable (a hash table + linked
lists). It would be improved in the future.
Added functions in in6.c come from FreeBSD (as of r286629) and are
tweaked for NetBSD.
Proposed on tech-kern and tech-net.
This is a restructuring for coming changes to nd6 (replacing
llinfo_nd6 with llentry). Once we have a lock of llinfo_nd6,
we need to pass it to nd6_ns_output with holding the lock.
However, in a function subsequent to nd6_ns_output, the llinfo_nd6
may be looked up, i.e., its lock would be acquired again.
To avoid such a situation, pass only required data (in6_addr) to
nd6_ns_output instead of passing whole llinfo_nd6.
Inspired by FreeBSD
rt_refcnt of rtentry was used in bad manners, for example, direct rt_refcnt++
and rt_refcnt-- outside route.c, "rt->rt_refcnt++; rtfree(rt);" idiom, and
touching rt after rt->rt_refcnt--.
These abuses seem to be needed because rt_refcnt manages only references
between rtentry and doesn't take care of references during packet processing
(IOW references from local variables). In order to reduce the above abuses,
the latter cases should be counted by rt_refcnt as well as the former cases.
This change improves consistency of use of rt_refcnt:
- rtentry is always accessed with rt_refcnt incremented
- rtentry's rt_refcnt is decremented after use (rtfree is always used instead
of rt_refcnt--)
- functions returning rtentry increment its rt_refcnt (and caller rtfree it)
Note that rt_refcnt prevents rtentry from being freed but doesn't prevent
rtentry from being updated. Toward MP-safe, we need to provide another
protection for rtentry, e.g., locks. (Or introduce a better data structure
allowing concurrent readers during updates.)
per-interface data, make sure to call nd6_purge() with it to remove
routing entries pointing to the going interface.
When we should happen to call this function again later, with the data
already gone, just return.
Fixes PR kern/49682, ok: christos.
nd6_dad_start uses callout when xtick > 0 while doesn't when
xtick == 0. So if we pass a random value ranging from 0 to N,
nd6_dad_start uses callout randomly. This behavior makes
debugging difficult.
Discussed in http://mail-index.netbsd.org/tech-kern/2014/06/25/msg017278.html
KAME_IPSEC, and make IPSEC define it so that existing kernel
config files work as before
Now the default can be easily be changed to FAST_IPSEC just by
setting the IPSEC alias to FAST_IPSEC.