lfs_balloc(), and use that to estimate the number of dirty pages belonging
to LFS (subsystem or filesystem). This is almost certainly wrong for
the case of a large mmap()ed region, but the accounting is tighter than
what we had before, and performs much better in the typical case of pages
dirtied through write().
into a single, system-wide table, rather than having a separate hash table
per inode. Significantly reduces the "system" cpu usage of your average
file write.
be assured that the last byte of a file is always allocated. Previously
a file extension could cause the filesystem to be flushed, writing an
inconsistent inode to disk. Although this condition would be corrected
the next time blocks were written to disk, an intervening crash would leave
the filesystem in an inconsistent state, leaving fsck_lfs to complain
of an inode "partially truncated".
stuff under '#ifdef DEBUG', and use sysctl knobs to turn on/off particular
parts of the debugging reporting (if DEBUG is enabled). Re-enable the LFS
statistics in sysctl, while I'm there. A bit of a rototill.
* Note when lfs_putpages(9) thinks it is not going to be writing any
pages before calling genfs_putpages(9). This prevents a situation in
which blocks can be queued for writing without a segment header.
* Correct computation of NRESERVE(), though it is still a gross
overestimate in most cases. Note that if NRESERVE() is too high, it
may be impossible to create files on the filesystem. We catch this
case on filesystem mount and refuse to mount r/w.
* Allow filesystems to be mounted whose block size is == MAXBSIZE.
* Somewhere along the line, ufs_bmaparray(9) started mangling UNWRITTEN
entries in indirect blocks again, triggering a failed assertion "daddr
<= LFS_MAX_DADDR". Explicitly convert to and from int32_t to correct
this.
* Add a high-water mark for the number of dirty pages any given LFS can
hold before triggering a flush. This is settable by sysctl, but off
(zero) by default.
* Be more careful about the MAX_BYTES and MAX_BUFS computations so we
shouldn't see "please increase to at least zero" messages.
* Note that VBLK and VCHR vnodes can have nonzero values in di_db[0]
even though their v_size == 0. Don't panic when we see this.
* Change lfs_bfree to a signed quantity. The manner in which it is
processed before being passed to the cleaner means that sometimes it
may drop below zero, and the cleaner must be aware of this.
* Never report bfree < 0 (or higher than lfs_dsize) through
lfs_statvfs(9). This prevents df(1) from ever telling us that our full
filesystems have 16TB free.
* Account space allocated through lfs_balloc(9) that does not have
associated buffer headers, so that the pagedaemon doesn't run us out
of segments.
* Return ENOSPC from lfs_balloc(9) when bfree drops to zero.
* Address a deadlock in lfs_bmapv/lfs_markv when the filesystem is being
unmounted. Because vfs_busy() is a shared lock, and
lfs_bmapv/lfs_markv mark the filesystem vfs_busy(), the cleaner can be
holding the lock that umount() is blocking on, then try to vfs_busy()
again in getnewvnode().
rarely in the normal case. (Note: This happens at reboot/shutdown time because
all file systems are unmounted.)
Also, for IN_MODIFY, use IN_ACCESSED, not IN_MODIFIED; otherwise "ls -l" of
your device node or FIFO would cause the time stamps to get written too
quickly.
setting those flags, it does not cause the inode to be written in the periodic
sync. This is used for writes to special files (devices and named pipes) and
FIFOs.
Do not preemptively sync updates to access times and modification times. They
are now updated in the inode only opportunistically, or when the file or device
is closed. (Really, it should be delayed beyond close, but this is enough to
help substantially with device nodes.)
And the most amusing part:
Trickle sync was broken on both FFS and ext2fs, in different ways. In FFS, the
periodic call to VFS_SYNC(MNT_LAZY) was still causing all file data to be
synced. In ext2fs, it was causing the metadata to *not* be synced. We now
only call VOP_UPDATE() on the node if we're doing MNT_LAZY. I've confirmed
that we do in fact trickle correctly now.
filesystem (and other things that needed to be fixed before the tests
would complete), to wit:
* Include the fs ident in the filehandle; improve stale filehandle checks.
* Change definition of blksize() to use the on-dinode size instead of
the inode's i_size, so that fsck_lfs will work properly again.
* Use b_interlock in lfs_vtruncbuf.
* Postpone dirop reclamation until after the seglock has been released,
so that lfs_truncate is not called with the segment lock held.
* Don't loop in lfs_fsync(), just write everything and wait.
* Be more careful about the interlock/uobjlock in lfs_putpages: when we
lose this lock, we have to resynchronize dirtiness of pages in each
block.
* Be sure to always write indirect blocks and update metadata in
lfs_putpages; fixes a bug that caused blocks to be accounted to the
wrong segment.
64 bit block pointers, extended attribute storage, and a few
other things.
This commit does not yet include the code to manipulate the extended
storage (for e.g. ACLs), this will be done later.
Originally written by Kirk McKusick and Network Associates Laboratories for
FreeBSD.
when the filesystem is unmounted, relocking the Ifile when its lock is
draining. (We can't use vfs_busy() since the process is sleeping for a
good long time.) Clean up / organize lfs.h, while I'm here.
In lfs_update_single, assert that disk addresses are either negative, or
are still positive when converted to int32_t, to prevent recurrence of a
negative/positive block problem.
checking the memq.
Take greater care not to dirty the Ifile vnode when unmounting the filesystem.
This should fix a "(vp->v_flag & VONWORKLST) == 0" assertion panic in vgonel
that could occur when unmounting.
Do not allow the Ifile to be mapped for writing.
be expanded to cover other per-fs and subsystem-wide data as well.
Fix a case of IN_MODIFIED being set without updating lfs_uinodes, resulting
in a "lfs_uinodes < 0" panic.
Fix a deadlock in lfs_putpages arising from the need to busy all pages in a
block; unbusy any that had already been busied before starting over.
always true) and accompanying dead code.
- When constructing write clusters in lfs_writeseg, if the block we are
about to add is itself a cluster from GOP_WRITE, don't put a cluster
in a cluster, just write the GOP_WRITE cluster on its own. This seems
to represent a slight performance gain on my test machine.
- Charge someone's rusage for writes on LFSes. It's difficult to tell
who the "right" process to charge is; just charge whoever triggered
the write.
where the cleaner is trying to write, instead of tying up the "live"
buffers (or pages).
Fix a bug in the LFS_UBC case where oversized buffers would not be
checksummed correctly, causing uncleanable segments.
Make sure that wakeup(fs->lfs_iocount) is done if fs->lfs_iocount is 1
as well as 0, since we wait in some places for it to drop to 1.
Activate all pages that make it into lfs_gop_write without the segment
lock held, since they must have been dirtied very recently, even if
PG_DELWRI is not set.
actually happens.
Add a new fcntl call that will write the minimum necessary to checkpoint
(i.e., for on-disk directory structure to be consistent, not including
updates to file data) so that the cleaner can clean segments more quickly
without sacrificing three-way commit for cleaning.
either as a mysterious UVM error or as "panic: dirty bufs". Verify
maximum size in lfs_malloc.
Teach lfs_updatemeta and lfs_shellsort about oversized cluster blocks from
lfs_gop_write.
When unwiring pages in lfs_gop_write, deactivate them, under the theory
that the pagedaemon wanted to free them last we knew.
(there are still some details to work out) but expect that to go
away soon. To support these basic changes (creation of lfs_putpages,
lfs_gop_write, mods to lfs_balloc) several other changes were made, to
wit:
* Create a writer daemon kernel thread whose purpose is to handle page
writes for the pagedaemon, but which also takes over some of the
functions of lfs_check(). This thread is started the first time an
LFS is mounted.
* Add a "flags" parameter to GOP_SIZE. Current values are
GOP_SIZE_READ, meaning that the call should return the size of the
in-core version of the file, and GOP_SIZE_WRITE, meaning that it
should return the on-disk size. One of GOP_SIZE_READ or
GOP_SIZE_WRITE must be specified.
* Instead of using malloc(...M_WAITOK) for everything, reserve enough
resources to get by and use malloc(...M_NOWAIT), using the reserves if
necessary. Use the pool subsystem for structures small enough that
this is feasible. This also obsoletes LFS_THROTTLE.
And a few that are not strictly necessary:
* Moves the LFS inode extensions off onto a separately allocated
structure; getting closer to LFS as an LKM. "Welcome to 1.6O."
* Unified GOP_ALLOC between FFS and LFS.
* Update LFS copyright headers to correct values.
* Actually cast to unsigned in lfs_shellsort, like the comment says.
* Keep track of which segments were empty before the previous
checkpoint; any segments that pass two checkpoints both dirty and
empty can be summarily cleaned. Do this. Right now lfs_segclean
still works, but this should be turned into an effectless
compatibility syscall.
exist on an on-disk inode, we keep a record of its size in struct inode,
which is updated when we write the block to disk. The cleaner routines
thus have ready access to what size is the correct size for this block,
on disk.
Fixed a related bug: if a file with fragments is being cleaned
(fragments being cleaned) at the same time it is being extended beyond
NDADDR blocks, we could write a bogus FINFO record that has a frag in the
middle; when it was cleaned this would give back bogus file data. Don't
write the indirect blocks in this case, since there is no need.
lfs_fragextend and lfs_truncate no longer require the seglock, but instead
take a shared lock, which the seglock locks exclusively.
processes don't have to wait for one another to finish (e.g., nfsd seems
to be a little happier now, though I haven't measured the difference).
Synchronous checkpoints, however, must always wait for all i/o to finish.
Take the contents of the callback functions and have them run in thread
context instead (aiodoned thread). lfs_iocount no longer has to be
protected in splbio(), and quite a bit less of the segment construction
loop needs to be in splbio() as well.
If lfs_markv is handed a block that is not the correct size according to
the inode, refuse to process it. (Formerly it was extended to the "correct"
size.) This is possibly more prone to deadlock, but less prone to corruption.
lfs_segclean now outright refuses to clean segments that appear to have live
bytes in them. Again this may be more prone to deadlock but avoids
corruption.
Replace ufsspec_close and ufsfifo_close with LFS equivalents; this means
that no UFS functions need to know about LFS_ITIMES any more. Remove
the reference from ufs/inode.h.
Tested on i386, test-compiled on alpha.
I found while making sure there weren't any new ones.
* Make the write clusters keep track of the buffers whose blocks they contain.
This should make it possible to (1) write clusters using a page mapping
instead of malloc, if desired, and (2) schedule blocks for rewriting
(somewhere else) if a write error occurs. Code is present to use
pagemove() to construct the clusters but that is untested and will go away
anyway in favor of page mapping.
* DEBUG now keeps a log of Ifile writes, so that any lingering instances of
the "dirty bufs" problem can be properly debugged.
* Keep track of whether the Ifile has been dirtied by various routines that
can be called by lfs_segwrite, and loop on that until it is clean, for
a checkpoint. Checkpoints need to be squeaky clean.
* Warn the user (once) if the Ifile grows larger than is reasonable for their
buffer cache. Both lfs_mountfs and lfs_unmount check since the Ifile can
grow.
* If an inode is not found in a disk block, try rereading the block, under
the assumption that the block was copied to a cluster and then freed.
* Protect WRITEINPROG() with splbio() to fix a hang in lfs_update.
Kernels and tools understand both v1 and v2 filesystems; newfs_lfs
generates v2 by default. Changes for the v2 layout include:
- Segments of non-PO2 size and arbitrary block offset, so these can be
matched to convenient physical characteristics of the partition (e.g.,
stripe or track size and offset).
- Address by fragment instead of by disk sector, paving the way for
non-512-byte-sector devices. In theory fragments can be as large
as you like, though in reality they must be smaller than MAXBSIZE in size.
- Use serial number and filesystem identifier to ensure that roll-forward
doesn't get old data and think it's new. Roll-forward is enabled for
v2 filesystems, though not for v1 filesystems by default.
- The inode free list is now a tailq, paving the way for undelete (undelete
is not yet implemented, but can be without further non-backwards-compatible
changes to disk structures).
- Inode atime information is kept in the Ifile, instead of on the inode;
that is, the inode is never written *just* because atime was changed.
Because of this the inodes remain near the file data on the disk, rather
than wandering all over as the disk is read repeatedly. This speeds up
repeated reads by a small but noticeable amount.
Other changes of note include:
- The ifile written by newfs_lfs can now be of arbitrary length, it is no
longer restricted to a single indirect block.
- Fixed an old bug where ctime was changed every time a vnode was created.
I need to look more closely to make sure that the times are only updated
during write(2) and friends, not after-the-fact during a segment write,
and certainly not by the cleaner.