time) to pthread__start() (called on the first call of
pthread_create()), so that there's no opportunity for a fork() to
clear the per-process timer.
Problem pointed out by a test program from Mihai CHELARU on
current-users.
opposed to internal errors. The setting of the PTHREAD_ERRORMODE
environment variable determines the runtime behavior. Valid settings
are "ignore", "abort", and "print". The default is currently "abort".
officially have undefined behavior, from returning an error code to raising
an assertion failure.
Also, don't bother to explicitly test for (illegal) null pointers and return
an error; they'll bomb out soon enough.
front of the sleep queue rather than the back. This is more
cache-friendly behavior and within the (lack of) constraints on wakeup
ordering imposed on equal-priority threads.
mangling results.
Fixes regression in test yield2, dating to 2003/1/2 when
pthread__locked_switch() was changed to not store the saved-context
pointer until after switching stacks.
Note to self: regression tests exist to be run.
* pthread_attr_getname_np()
* pthread_attr_setname_np()
* pthread_getname_np()
* pthread_setname_np()
In addition to being query'able by the application (for log messages, etc.),
it is intended that these names can show up in the debugger.
Reviewed by nathanw.
PT_FLAG_CS_DISABLED in pt_flags.
Prevents cancellation cleanup handlers from thinking that they've been
canceled and exiting mid-handler. Problem spotted by Matt Thomas.
to sleep a lot, and there's no need for each such thread to consume kernel
resources.
(accidentally checked the pthread.c part of this in yesterday; no reason
not to finish the job)
pthread_cond_timedwait() is called before any threads have been
created and the SA infrastructure is up and running.
Addresses PR lib/20139.
XXX probably need to do this for all of the pthread_*_timedlock()
functions, too.
over a sleep queue and puts everything on the run queue. This permits
the iteration to be inside the acquisition of the run queue spinlock,
avoiding repetitive acquire/release cycles.
pthread_cond_broadcast(): use double-checked locking to avoid
pthread__self() and pthread_spinlock() when signaling or broadcasting
on a condition variable with no waiters.
* Use a double-checked locking technique to avoid taking
the interlock in pthread_mutex_unlock().
* In pthread_mutex_lock() and pthread_mutex_trylock(), only store the
stack pointer, not the thread ID, in ptm_owner. Do the translation
to a thread ID in the slow-lock, errorcheck, and recursive mutex
cases rather than in the common path.
* Juggle where pthread__self() is called, to move it out of the fast path.
Overall, this means that neither pthread_self() nor
pthread_spin[un]lock() are used in the course of locking and unlocking
an uncontested mutex. Speeds up the fast path by 40-50%, and
eliminates about 98% of spinlocks used by a couple of large threaded
applications.
(Still a GET_MUTEX_PRIVATE() in the fast path... perhaps the type
should be in the main body of the mutex).
* Implement pthread_kill().
* Return the old thread mask, not the old process mask, in our
interpositioned sigaction call.
* Refer to _NSIG, not NSIG.
* Gut pthread_sigmask(). It was handling a lot of corner cases that
weren't legal anyway. Handle unblocked signals with a new
pthread__kill_self() routine (also used by pthread_kill()).
* Be more consistent with locking around pt_sigacts[].
switch statement, and moving upcall-type-specific code into that switch.
Beneficial side effect: don't manipulate a statelock before lock resolution
occurs.