- don't wait for locking buf in lfs_bwrite_ext to avoid deadlocks.
- skip lfs_reserve when we're doing dirop.
reserve more (for lfs_truncate) in set_dirop instead.
this mostly solves PR 18972. (and hopefully PR 19196)
mark inode IN_CLEANING rather then IN_MODIFIED.
otherwise cleaned (indirect) blocks belongs to the inode isn't written
until next sync.
- add assertions.
reading blocks that isn't written yet.
it's needed because we'll update metadatas in lfs_updatemeta
before data pointed by them is actually written to disk.
XXX should be solved with fake inode/indirect blocks instead?
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
This is the bulk of PR #17345
The general approach is to use a run time deteriminable value
for DIRBLKSIZ. Additional allowances are included for using
MAXSYMLINKLEN with FS_42INODEFMT and a shift in the cylinder group
cluster summary count array. Support is added for managing
the Apple UFS volume label.
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.