Commit Graph

6 Commits

Author SHA1 Message Date
thorpej
a180cee23b Pool deals fairly well with physical memory shortage, but it doesn't
deal with shortages of the VM maps where the backing pages are mapped
(usually kmem_map).  Try to deal with this:

* Group all information about the backend allocator for a pool in a
  separate structure.  The pool references this structure, rather than
  the individual fields.
* Change the pool_init() API accordingly, and adjust all callers.
* Link all pools using the same backend allocator on a list.
* The backend allocator is responsible for waiting for physical memory
  to become available, but will still fail if it cannot callocate KVA
  space for the pages.  If this happens, carefully drain all pools using
  the same backend allocator, so that some KVA space can be freed.
* Change pool_reclaim() to indicate if it actually succeeded in freeing
  some pages, and use that information to make draining easier and more
  efficient.
* Get rid of PR_URGENT.  There was only one use of it, and it could be
  dealt with by the caller.

From art@openbsd.org.
2002-03-08 20:48:27 +00:00
lukem
576eed5512 Add new malloc(9) flag M_ZERO - zeros memory before returning.
From Poul-Henning Kamp's equivalent enhancement in FreeBSD.
2001-11-17 03:50:27 +00:00
lukem
adc783d537 add RCSIDs 2001-11-12 15:25:01 +00:00
fvdl
f8ff451a0a Fix reversed wait/nowait logic. 2001-10-31 22:23:18 +00:00
chs
64c6d1d2dc a whole bunch of changes to improve performance and robustness under load:
- remove special treatment of pager_map mappings in pmaps.  this is
   required now, since I've removed the globals that expose the address range.
   pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's
   no longer any need to special-case it.
 - eliminate struct uvm_vnode by moving its fields into struct vnode.
 - rewrite the pageout path.  the pager is now responsible for handling the
   high-level requests instead of only getting control after a bunch of work
   has already been done on its behalf.  this will allow us to UBCify LFS,
   which needs tighter control over its pages than other filesystems do.
   writing a page to disk no longer requires making it read-only, which
   allows us to write wired pages without causing all kinds of havoc.
 - use a new PG_PAGEOUT flag to indicate that a page should be freed
   on behalf of the pagedaemon when it's unlocked.  this flag is very similar
   to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the
   pageout fails due to eg. an indirect-block buffer being locked.
   this allows us to remove the "version" field from struct vm_page,
   and together with shrinking "loan_count" from 32 bits to 16,
   struct vm_page is now 4 bytes smaller.
 - no longer use PG_RELEASED for swap-backed pages.  if the page is busy
   because it's being paged out, we can't release the swap slot to be
   reallocated until that write is complete, but unlike with vnodes we
   don't keep a count of in-progress writes so there's no good way to
   know when the write is done.  instead, when we need to free a busy
   swap-backed page, just sleep until we can get it busy ourselves.
 - implement a fast-path for extending writes which allows us to avoid
   zeroing new pages.  this substantially reduces cpu usage.
 - encapsulate the data used by the genfs code in a struct genfs_node,
   which must be the first element of the filesystem-specific vnode data
   for filesystems which use genfs_{get,put}pages().
 - eliminate many of the UVM pagerops, since they aren't needed anymore
   now that the pager "put" operation is a higher-level operation.
 - enhance the genfs code to allow NFS to use the genfs_{get,put}pages
   instead of a modified copy.
 - clean up struct vnode by removing all the fields that used to be used by
   the vfs_cluster.c code (which we don't use anymore with UBC).
 - remove kmem_object and mb_object since they were useless.
   instead of allocating pages to these objects, we now just allocate
   pages with no object.  such pages are mapped in the kernel until they
   are freed, so we can use the mapping to find the page to free it.
   this allows us to remove splvm() protection in several places.

The sum of all these changes improves write throughput on my
decstation 5000/200 to within 1% of the rate of NetBSD 1.5
and reduces the elapsed time for "make release" of a NetBSD 1.5
source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-15 20:36:31 +00:00
thorpej
bbd3d01db5 Artur Grabowski's simple brute-force malloc debugger, which uses
guard pages.  Can only debug one malloc type at a time, and nothing
larger than 1 page.  But can be useful for debugging certain types
of "data modified on freelist" type problems.

Modified from code in OpenBSD.
2001-08-17 00:48:29 +00:00