KAME_IPSEC, and make IPSEC define it so that existing kernel
config files work as before
Now the default can be easily be changed to FAST_IPSEC just by
setting the IPSEC alias to FAST_IPSEC.
<20111022023242.BA26F14A158@mail.netbsd.org>. This change includes
the following:
An initial cleanup and minor reorganization of the entropy pool
code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are
fixed. Some effort is made to accumulate entropy more quickly at
boot time.
A generic interface, "rndsink", is added, for stream generators to
request that they be re-keyed with good quality entropy from the pool
as soon as it is available.
The arc4random()/arc4randbytes() implementation in libkern is
adjusted to use the rndsink interface for rekeying, which helps
address the problem of low-quality keys at boot time.
An implementation of the FIPS 140-2 statistical tests for random
number generator quality is provided (libkern/rngtest.c). This
is based on Greg Rose's implementation from Qualcomm.
A new random stream generator, nist_ctr_drbg, is provided. It is
based on an implementation of the NIST SP800-90 CTR_DRBG by
Henric Jungheim. This generator users AES in a modified counter
mode to generate a backtracking-resistant random stream.
An abstraction layer, "cprng", is provided for in-kernel consumers
of randomness. The arc4random/arc4randbytes API is deprecated for
in-kernel use. It is replaced by "cprng_strong". The current
cprng_fast implementation wraps the existing arc4random
implementation. The current cprng_strong implementation wraps the
new CTR_DRBG implementation. Both interfaces are rekeyed from
the entropy pool automatically at intervals justifiable from best
current cryptographic practice.
In some quick tests, cprng_fast() is about the same speed as
the old arc4randbytes(), and cprng_strong() is about 20% faster
than rnd_extract_data(). Performance is expected to improve.
The AES code in src/crypto/rijndael is no longer an optional
kernel component, as it is required by cprng_strong, which is
not an optional kernel component.
The entropy pool output is subjected to the rngtest tests at
startup time; if it fails, the system will reboot. There is
approximately a 3/10000 chance of a false positive from these
tests. Entropy pool _input_ from hardware random numbers is
subjected to the rngtest tests at attach time, as well as the
FIPS continuous-output test, to detect bad or stuck hardware
RNGs; if any are detected, they are detached, but the system
continues to run.
A problem with rndctl(8) is fixed -- datastructures with
pointers in arrays are no longer passed to userspace (this
was not a security problem, but rather a major issue for
compat32). A new kernel will require a new rndctl.
The sysctl kern.arandom() and kern.urandom() nodes are hooked
up to the new generators, but the /dev/*random pseudodevices
are not, yet.
Manual pages for the new kernel interfaces are forthcoming.
sys/stdarg.h and expect compiler to provide proper builtins, defaulting
to the GCC interface. lint still has a special fallback.
Reduce abuse of _BSD_VA_LIST_ by defining __va_list by default and
derive va_list as required by standards.
ts_rtt is 1 plus the RTT, so that 0 can mean invalid measurement.
However, the code failed to subtract the 1 back out before use. With
this change, TCP from Massachusetts to France now typically has 1s RTO
values, rather than 1.5s.
This bug was found and fixed by Bev Schwartz of BBN. This material is
based upon work supported by the Defense Advanced Research Projects
Agency and Space and Naval Warfare Systems Center, Pacific, under
Contract No. N66001-09-C-2073. Approved for Public Release,
Distribution Unlimited
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
Long ago, the storage representations of srtt and rttvar were changed
from the 4.4BSD scheme, and the comments are out of sync with the
code. This commit rewrites most of the comments that explain the RTO
calculations, and points out some issues in the code.
Joint work with Bev Schwartz of BBN (original analysis and comments),
but I have rewritten and extended them, so errors are mine.
This material is based upon work supported by the Defense Advanced
Research Projects Agency and Space and Naval Warfare Systems Center,
Pacific, under Contract No. N66001-09-C-2073. Approved for Public
Release, Distribution Unlimited
the callout if needed so frees are not delayed too much.
syn_cache_timer(): we can't call syn_cache_put() here any more,
so move code deleted from syn_cache_put() here.
Avoid KASSERT() in kern_timeout.c because pool_put() is called from
ipintr context, as reported in
http://mail-index.netbsd.org/tech-kern/2010/03/19/msg007762.html
Thanks to Andrew Doran and Mindaugas Rasiukevicius for help and review.
the driver output path (that is, ifp->if_output()). In the case of
entry through the socket code, we are fine, because pru_usrreq takes
KERNEL_LOCK. However, there are a few other ways to cause output
which require protection:
1) direct calls to tcp_output() in tcp_input()
2) fast-forwarding code (ip_flow) -- protected elsewise
against itself by the softnet lock.
3) *Possibly* the ARP code. I have currently persuaded
myself that it is safe because of how it's called.
4) Possibly the ICMP code.
This change addresses #1 and #2.
The IP_MINTTL option may be used on SOCK_STREAM sockets to discard
packets with a TTL lower than the option value. This can be used to
implement the Generalized TTL Security Mechanism (GTSM) according to
RFC 3682.
OK'ed by christos@.
Don't check gainst the last ack received, but the expected sequence number.
This makes RST handling independent of delayed ACK. From Joanne M Mikkelson.
cases with in-kernel consumers which might send data on the same socket,
we can deadlock on the reassembly queue otherwise (observed while testing
accept filters).
- Socket layer becomes MP safe.
- Unix protocols become MP safe.
- Allows protocol processing interrupts to safely block on locks.
- Fixes a number of race conditions.
With much feedback from matt@ and plunky@.
- Add a lot of missing selinit() and seldestroy() calls.
- Merge selwakeup() and selnotify() calls into a single selnotify().
- Add an additional 'events' argument to selnotify() call. It will
indicate which event (POLL_IN, POLL_OUT, etc) happen. If unknown,
zero may be used.
Note: please pass appropriate value of 'events' where possible.
Proposed on: <tech-kern>
- add a comment to explain why:
+ * We start with 1, because 0 doesn't work with linux, which
+ * considers timestamp 0 in a SYN packet as a bug and disables
+ * timestamps.
revision 1.230
date: 2005/06/30 02:58:28; author: christos; state: Exp; lines: +20 -4
Normalize our PAWS code with Free and Open, as mentioned in tech-security.
reviewed by christos@ and matt@.
to _ro_rt. Use rtcache_getrt() to access a route cache's struct
rtentry *.
Introduce struct ifnet->if_dl that always points at the interface
identifier/link-layer address. Make code that treated the first
ifaddr on struct ifnet->if_addrlist as the interface address use
if_dl, instead.
Remove stale debugging code from net/route.c. Move the rtflush()
code into rtcache_clear() and delete rtflush(). Delete rtalloc(),
because nothing uses it any more.
Make ND6_HINT an inline, lowercase subroutine, nd6_hint.
I've done my best to convert IP Filter, the ISO stack, and the
AppleTalk stack to rtcache_getrt(). They compile, but I have not
tested them. I have given the changes to PF, GRE, IPv4 and IPv6
stacks a lot of exercise.
in_pcbbind().
Okay dyoung@.
Note that the network code is another candidate for major cleanup... also
note that this issue is likely to be present in netinet6 code, too.