parentheses in return statements.
Cosmetic: don't open-code TAILQ_FOREACH().
Cosmetic: change types of variables to avoid oodles of casts: in
in6_src.c, avoid casts by changing several route_in6 pointers
to struct route pointers. Remove unnecessary casts to caddr_t
elsewhere.
Pave the way for eliminating address family-specific route caches:
soon, struct route will not embed a sockaddr, but it will hold
a reference to an external sockaddr, instead. We will set the
destination sockaddr using rtcache_setdst(). (I created a stub
for it, but it isn't used anywhere, yet.) rtcache_free() will
free the sockaddr. I have extracted from rtcache_free() a helper
subroutine, rtcache_clear(). rtcache_clear() will "forget" a
cached route, but it will not forget the destination by releasing
the sockaddr. I use rtcache_clear() instead of rtcache_free()
in rtcache_update(), because rtcache_update() is not supposed
to forget the destination.
Constify:
1 Introduce const accessor for route->ro_dst, rtcache_getdst().
2 Constify the 'dst' argument to ifnet->if_output(). This
led me to constify a lot of code called by output routines.
3 Constify the sockaddr argument to protosw->pr_ctlinput. This
led me to constify a lot of code called by ctlinput routines.
4 Introduce const macros for converting from a generic sockaddr
to family-specific sockaddrs, e.g., sockaddr_in: satocsin6,
satocsin, et cetera.
in6_control() with splnet()/splx(). I was being a bit paranoid
here. Following a cursory analysis of the code, this still looked
necessary. We don't spend a lot of time in these calls, so it
should not be too harmful to suspend network interrupts.
In in6_unlink_ifa(), call in6_delmulti() just once on each multicast
address (in6_multi). Previously, in6_unlink_ifa() called in6_delmulti()
on each in6_multi until in6_delmulti() removed the in6_multi from
the list and freed its memory. That's not justified: the multicast
list holds *one* reference. All other references belong to other
entities. We must wait to free the memory until the other entities
release their references, to protect against dereferencing a freed
in6_multi.
XXX I need to revisit in6_delmulti(), in6_unlink_ifa(), and friends,
XXX to pry apart the conditions where an in6_multi is removed from
XXX its list and where it is freed. Following my change, above,
XXX we still risk dereferencing a freed in6_multi.
Prevent in6_update_ifa() and in6_addremloop() from creating dangling
pointers to interfaces in the routing table. Previously, my NetBSD
tunnel concentrator, which adds and deletes a lot of P2P interfaces
with the same local address, crashed in 8 hours or less when it
dereferenced a dangling pointer to a deleted ifnet. Now, its uptime
is greater than 3 days.
Also, add ioctls SIOCGIFADDRPREF/SIOCSIFADDRPREF to get/set preference
numbers for addresses. Make ifconfig(8) set/display preference
numbers.
To activate source-address selection policies in your kernel, add
'options IPSELSRC' to your kernel configuration.
Miscellaneous changes in support of source-address selection:
1 Factor out some common code, producing rt_replace_ifa().
2 Abbreviate a for-loop with TAILQ_FOREACH().
3 Add the predicates on IPv4 addresses IN_LINKLOCAL() and
IN_PRIVATE(), that are true for link-local unicast
(169.254/16) and RFC1918 private addresses, respectively.
Add the predicate IN_ANY_LOCAL() that is true for link-local
unicast and multicast.
4 Add IPv4-specific interface attach/detach routines,
in_domifattach and in_domifdetach, which build #ifdef
IPSELSRC.
See in_getifa(9) for a more thorough description of source-address
selection policy.
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html
case:
<driver>_ioctl(ifp, SIOCSIFADDR, struct ifreq *)
where it should be calling:
<driver>_ioctl(ifp, SIOCSIFADDR, struct ifaddr *)
and "Bad Things Happen (TM)"
Returning an error is good enough because none of the drivers handle INET6.
The problem here is that handling SIOCSIFADDR is a kludge. The ioctl gets
passed a struct ifreq * from userland, but then in the control routines
SIOCSIFADDR is handled "specially", and we call:
ifp->if_ioctl(ifp, SIOCSIFADDR, struct ifaddr *)
directly with the ifaddr we computed for that interface. It would be nice
if we called the ioctl routine if the original struct ifreq, and computed
the ifaddr, or passed it directly. This way all the ioctls would be treated
the same way, and we would not have the problem of pointer overloading.
RFC4191
- supports host-side router-preference
RFC3542
- if DAD fails on a interface, disables IPv6 operation on the
interface
- don't advertise MLD report before DAD finishes
Others
- fixes integer overflow for valid and preferred lifetimes
- improves timer granularity for MLD, using callout-timer.
- reflects rtadvd's IPv6 host variable information into kernel
(router only)
- adds a sysctl option to enable/disable pMTUd for multicast
packets
- performs NUD on PPP/GRE interface by default
- Redirect works regardless of ip6_accept_rtadv
- removes RFC1885-related code
From the KAME project via SUZUKI Shinsuke.
Reviewed by core.
- most of the kernel code will not care about the actual encoding of
scope zone IDs and won't touch "s6_addr16[1]" directly.
- similarly, most of the kernel code will not care about link-local
scoped addresses as a special case.
- scope boundary check will be stricter. For example, the current
*BSD code allows a packet with src=::1 and dst=(some global IPv6
address) to be sent outside of the node, if the application do:
s = socket(AF_INET6);
bind(s, "::1");
sendto(s, some_global_IPv6_addr);
This is clearly wrong, since ::1 is only meaningful within a single
node, but the current implementation of the *BSD kernel cannot
reject this attempt.
- and, while there, don't try to remove the ff02::/32 interface route
entry in in6_ifdetach() as it's already gone.
This also includes some level of support for the standard source
address selection algorithm defined in RFC3484, which will be
completed on in the future.
From the KAME project via JINMEI Tatuya.
Approved by core@.
to check if interface exists, as (1) if_index has different meaning
(2) ifindex2ifnet could become NULL when interface gets destroyed,
since when we have introduced dynamically-created interfaces. from kame