be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
Do a little mbuf rework while here. Change all uses of MGET*(*, M_WAIT, *)
to m_get*(M_WAIT, *). These are not performance critical and making them
call m_get saves considerable space. Add m_clget analogue of MCLGET and
make corresponding change for M_WAIT uses.
Modify netinet, gem, fxp, tulip, nfs to support MBUFTRACE.
Begin to change netstat to use sysctl.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
* Keep pointers to the first and last mbufs of the last record in the
socket buffer.
* Use the sb_lastrecord pointer in the sbappend*() family of functions
to avoid traversing the packet chain to find the last record.
* Add a new sbappend_stream() function for stream protocols which
guarantee that there will never be more than one record in the
socket buffer. This function uses the sb_mbtail pointer to perform
the data insertion. Make TCP use sbappend_stream().
On a profiling run, this makes sbappend of a TCP transmission using
a 1M socket buffer go from 50% of the time to .02% of the time.
Thanks to Bill Sommerfeld and YAMAMOTO Takashi for their debugging
assistance!
struct socket so_state field to decide if we need to send asynchronous
notifications. This makes possible to request notification on write but
not on read, and vice versa.
This is used in Linux emulation code, because when async I/O is requested,
Linux does not send SIGIO to write end of sockets, and it never send any
SIGIO to any end of pipes. Il Linux emulation code, we then set SB_ASYNC
only on the read end of sockets, and on no end for pipes.
the change constitutes binary compatibility issue hen sizeof(long) !=4.
there's no way to be backward compatible, and only guys affected
are IPv6 userland tools.
From: =?iso-8859-1?Q?G=F6ran_Bengtson?= <goeran@cdg.chalmers.se>
mbufs since you might overwriting valuable data. (think of
m_copy'ed data from a TCP re-transmission queue. Since those
might be in clusters and referenced in two sockets).
(Sorry for a big commit, I can't separate this into several pieces...)
Pls check sys/netinet6/TODO and sys/netinet6/IMPLEMENTATION for details.
- sys/kern: do not assume single mbuf, accept chained mbuf on passing
data from userland to kernel (or other way round).
- "midway" ATM card: ATM PVC pseudo device support, like those done in ALTQ
package (ftp://ftp.csl.sony.co.jp/pub/kjc/).
- sys/netinet/tcp*: IPv4/v6 dual stack tcp support.
- sys/netinet/{ip6,icmp6}.h, sys/net/pfkeyv2.h: IETF document assumes those
file to be there so we patch it up.
- sys/netinet: IPsec additions are here and there.
- sys/netinet6/*: most of IPv6 code sits here.
- sys/netkey: IPsec key management code
- dev/pci/pcidevs: regen
In my understanding no code here is subject to export control so it
should be safe.
conf/param.c, and move the initialisation of the sb_max
variable from kern/uipc_socket2.c to conf/param.c. Now
everthing that includes sys/socketvar.h doesn't get
recompiled when SB_MAX's value changes.
same uid or by root.
This code is from FreeBSD. (Whilst it was originally obtained from OpenBSD,
FreeBSD fixed it to work with multicast. To quote the commit message:
- Don't bother checking for conflicting sockets if we're binding to a
multicast address.
- Don't return an error if we're binding to INADDR_ANY, the conflicting
socket is bound to INADDR_ANY, and the conflicting socket has
SO_REUSEPORT set.
)
Keep queue of pending sockets in a double linked list. Previously,
a singly linked list was used, giving O(N) insertion/deletion times,
and was a major time consumer for sockets with large pending queues.
The double linked list give O(C) insertion/deletion times with only
a small cost in complexity.
Since a socket can be on, at most, one queue at a time, both so_q and
so_q0 can safely be used as (forward and backward, respectively) queue
pointers.
Submitted my Matt Thomas <matt@3am-software.com>, a long time ago.
(Geez, I've been running with this patch for _months_, and had completely
forgotten about it!)