Reasoning as before.
Note that I am not going through and checking for 64->32 truncations
in inode numbers; I'm sure there are quite a few, but that's a project
for later.
This contains all the accessor functions and macros out of lfs.h.
Add an include of lfs_accessors.h after all uses of lfs.h... except
for code that wants to define its own struct lfs-alike that the
accessors are supposed to play along with. For these, set STRUCT_LFS
and include lfs_accessors.h after the necessary structure has been
defined, so that lfs_accessors.h can emit functions in terms of it.
superblock. This will allow switching between 32/64 bit forms on the
fly; it will also allow handling LFS_EI reasonably tidily. (That
currently doesn't work on the superblock.)
It also gets rid of cpp abuse in the form of fake structure member
macros.
Also, instead of doing sleep/wakeup on &lfs_avail and &lfs_nextseg
inside the on-disk superblock, add extra elements to the in-memory
struct lfs for this. (XXX: these should be changed to condvars, but
not right now)
XXX: this migrates a structure needed by the lfs code in libsa (struct
salfs) into lfs.h, where it doesn't belong, but for the time being
this is necessary in order to allow the accessors (and the various
lfs macros and other goop that relies on them) to compile.
- lfs_cksum.c doesn't actually need ulfs_inode.h any more.
- neither does lfs_itimes.c.
- add hacks to fsck_lfs to make it compile.
- add hacks to newfs_lfs to make it compile.
- fix warning in ulfs_quota.c when quotas are fully disabled
(as I guess is happening with the rumpity version)
XXX: This commit adds -I${NETBSDSRCDIR}/sys to the Makefiles for
XXX: fsck_lfs, newfs_lfs, and lfs_cleanerd. This needs to be cleaned
XXX: up ASAP; but I consider this less problematic in the short term
XXX: than spewing ulfs_*.h into /usr/include.
pollution. Specifically:
ROOTINO -> UFS_ROOTINO
WINO -> UFS_WINO
NXADDR -> UFS_NXADDR
NDADDR -> UFS_NDADDR
NIADDR -> UFS_NIADDR
MAXSYMLINKLEN -> UFS_MAXSYMLINKLEN
MAXSYMLINKLEN_UFS[12] -> UFS[12]_MAXSYMLINKLEN (for consistency)
Sort out ext2fs's misuse of NDADDR and NIADDR; fortunately, these have
the same values in ext2fs and ffs.
No functional change intended.
* Add lfs_balloc capability to the lfs library.
* Extend the Ifile if we run out of free inodes when creating lost+found.
* Don't roll forward if we have allocated a lost+found, to avoid
conflicts when adding new files in roll-forward.
* Make some messages slightly more verbose (e.g. include inode number,
and use pwarn() instead of printf() so the messages include the device
name when preening).
* Change superblock detection/avoidance to use the offset table in the
primary superblock, rather than looking at the contents.
* Be more verbose about various operations when passed the -d flag,
especially roll-forward.
* Be more careful about dirops during roll forward, since the cleaner can
sometimes write blocks from dirop vnodes. Detect and avoid this problem.
* Always check the free list, even if given -i; if we're going to write
it we have to check it first.
* Mark inodes dirty when blocks are found during roll forward, so the
inodes are written with the new block locations.
* Update size of inodes if blocks beyond EOF are found during roll
forward.
* Fix segment accounting for blocks and inodes found during roll
forward.
* Report statistics on roll forward: how many new/deleted/moved files
and how many updated blocks (or "nothing new").
* Don't care if the device being checked is really a device, if we have
been passed the -f flag (to facilitate automated testing).
* When writing to the disk, use the current time in the segment headers
rathern than time 0.
* When passed the -i flag, locate the partial segment containing the
Ifile inode and use that to calculate lfs_offset, lfs_curseg,
lfs_nextseg. (Again for automated testing.)
the list in order (ordering it on mount).
Regularize error messages: these are now all in ALL CAPS, with all hex
numbers (not reported in caps) prefixed by 0x. (The non-fsck-specific
messages are an exception to this all-caps rule.)
too disordered. This should improve file creation speed on aged filesystems.
Include code to disorder the list for debugging purposes, though this is
of course not compiled in by default.
* Extend the lfs library from fsck_lfs(8) so that it can be used with a
not-yet-existent LFS. Make newfs_lfs(8) use this library, so it can
create LFSs whose Ifile is larger than one segment.
* Make newfs_lfs(8) use strsuftoi64() for its arguments, a la newfs(8).
* Make fsck_lfs(8) respect the "file system is clean" flag.
* Don't let fsck_lfs(8) think it has dirty blocks when invoked with the
-n flag.
(there are still some details to work out) but expect that to go
away soon. To support these basic changes (creation of lfs_putpages,
lfs_gop_write, mods to lfs_balloc) several other changes were made, to
wit:
* Create a writer daemon kernel thread whose purpose is to handle page
writes for the pagedaemon, but which also takes over some of the
functions of lfs_check(). This thread is started the first time an
LFS is mounted.
* Add a "flags" parameter to GOP_SIZE. Current values are
GOP_SIZE_READ, meaning that the call should return the size of the
in-core version of the file, and GOP_SIZE_WRITE, meaning that it
should return the on-disk size. One of GOP_SIZE_READ or
GOP_SIZE_WRITE must be specified.
* Instead of using malloc(...M_WAITOK) for everything, reserve enough
resources to get by and use malloc(...M_NOWAIT), using the reserves if
necessary. Use the pool subsystem for structures small enough that
this is feasible. This also obsoletes LFS_THROTTLE.
And a few that are not strictly necessary:
* Moves the LFS inode extensions off onto a separately allocated
structure; getting closer to LFS as an LKM. "Welcome to 1.6O."
* Unified GOP_ALLOC between FFS and LFS.
* Update LFS copyright headers to correct values.
* Actually cast to unsigned in lfs_shellsort, like the comment says.
* Keep track of which segments were empty before the previous
checkpoint; any segments that pass two checkpoints both dirty and
empty can be summarily cleaned. Do this. Right now lfs_segclean
still works, but this should be turned into an effectless
compatibility syscall.
Kernels and tools understand both v1 and v2 filesystems; newfs_lfs
generates v2 by default. Changes for the v2 layout include:
- Segments of non-PO2 size and arbitrary block offset, so these can be
matched to convenient physical characteristics of the partition (e.g.,
stripe or track size and offset).
- Address by fragment instead of by disk sector, paving the way for
non-512-byte-sector devices. In theory fragments can be as large
as you like, though in reality they must be smaller than MAXBSIZE in size.
- Use serial number and filesystem identifier to ensure that roll-forward
doesn't get old data and think it's new. Roll-forward is enabled for
v2 filesystems, though not for v1 filesystems by default.
- The inode free list is now a tailq, paving the way for undelete (undelete
is not yet implemented, but can be without further non-backwards-compatible
changes to disk structures).
- Inode atime information is kept in the Ifile, instead of on the inode;
that is, the inode is never written *just* because atime was changed.
Because of this the inodes remain near the file data on the disk, rather
than wandering all over as the disk is read repeatedly. This speeds up
repeated reads by a small but noticeable amount.
Other changes of note include:
- The ifile written by newfs_lfs can now be of arbitrary length, it is no
longer restricted to a single indirect block.
- Fixed an old bug where ctime was changed every time a vnode was created.
I need to look more closely to make sure that the times are only updated
during write(2) and friends, not after-the-fact during a segment write,
and certainly not by the cleaner.
(though still not all) errors in a damaged lfs. Segment byte accounting
is corrected in pass 5. "fsck_lfs -p" will do a partial roll-forward,
verifying the checkpoint from the newer superblock. fscknames[] is
updated so that fsck knows about fsck_lfs.