- genfs_putpages: wait for i/o completion of PG_RELEASED/PG_PAGEOUT pages by
setting "wasclean" false when encountering them.
suggested by Stephan Uphoff in PR/24596 (1).
- genfs_putpages: write protect pages when cleaning out, if
we're going to take the vnode off the syncer's queue.
uvm_fault: don't write-map pages unless its vnode is already on
the syncer's queue.
fix PR/24596 (3) but in the different way from the suggested fix.
(to keep our current behaviour, ie. not to require explicit msync.
discussed on tech-kern@.)
- genfs_putpages: don't mistakenly take a vnode off the queue
by introducing a generation number in genfs_node.
genfs_getpages: increment the generation number.
suggested by Stephan Uphoff in PR/24596 (2).
- add some assertions.
little or no swap.
- even on a severe swap shortage, if we have some amount of file-backed pages,
don't bother to kill processes.
- if all pages in queue will be likely reactivated, just give up
page type balancing rather than spinning unnecessarily.
PG_RELEASED for anon pages. PR/23171 from Christian Limpach.
for details, see discussion filed in the PR database.
uvm_anon_release: a new function to free anon-owned PG_RELEASED page.
uvm_anfree: we can't wait for the page here because the caller might hold
amap lock. instead, just mark the page as PG_RELEASED.
who unbusy the page should check the PG_RELEASED.
uvm_aio_aiodone: uvm_anon_release() instead of uvm_page_unbusy()
if appropriate.
uvmfault_anonget: check PG_RELEASED.
just skip that page. this situation can arise legitimately when a file
with a wired mapping is truncated so that a wired page is no longer
part of the file.
from VM_FAULT_WIRE in that when the pages being wired are faulted in,
the simulated fault is at the maximum protection allowed for the mapping
instead of the current protection. use this in uvm_map_pageable{,_all}()
to fix the problem where writing via ptrace() to shared libraries that
are also mapped with wired mappings in another process causes a
diagnostic panic when the wired mapping is removed.
this is a really obscure problem so it deserves some more explanation.
ptrace() writing to another process ends up down in uvm_map_extract(),
which for MAP_PRIVATE mappings (such as shared libraries) will cause
the amap to be copied or created. then the amap is made shared
(ie. the AMAP_SHARED flag is set) between the kernel and the ptrace()d
process so that the kernel can modify pages in the amap and have the
ptrace()d process see the changes. then when the page being modified
is actually faulted on, the object pages (from the shared library vnode)
is copied to a new anon page and inserted into the shared amap.
to make all the processes sharing the amap actually see the new anon
page instead of the vnode page that was there before, we need to
invalidate all the pmap-level mappings of the vnode page in the pmaps
of the processes sharing the amap, but we don't have a good way of
doing this. the amap doesn't keep track of the vm_maps which map it.
so all we can do at this point is to remove all the mappings of the
page with pmap_page_protect(), but this has the unfortunate side-effect
of removing wired mappings as well. removing wired mappings with
pmap_page_protect() is a legitimate operation, it can happen when a file
with a wired mapping is truncated. so the pmap has no way of knowing
whether a request to remove a wired mapping is normal or when it's due to
this weird situation. so the pmap has to remove the weird mapping.
the process being ptrace()d goes away and life continues. then,
much later when we go to unwire or remove the wired vm_map mapping,
we discover that the pmap mapping has been removed when it should
still be there, and we panic.
so where did we go wrong? the problem is that we don't have any way
to update just the pmap mappings that need to be updated in this
scenario. we could invent a mechanism to do this, but that is much
more complicated than this change and it doesn't seem like the right
way to go in the long run either.
the real underlying problem here is that wired pmap mappings just
aren't a good concept. one of the original properties of the pmap
design was supposed to be that all the information in the pmap could
be thrown away at any time and the VM system could regenerate it all
through fault processing, but wired pmap mappings don't allow that.
a better design for UVM would not require wired pmap mappings,
and Chuck C. and I are talking about this, but it won't be done
anytime soon, so this change will do for now.
this change has the effect of causing MAP_PRIVATE mappings to be
copied to anonymous memory when they are mlock()d, so that uvm_fault()
doesn't need to copy these pages later when called from ptrace(), thus
avoiding the call to pmap_page_protect() and the panic that results
from this when the mlock()d region is unlocked or freed. note that
this change doesn't help the case where the wired mapping is MAP_SHARED.
discussed at great length with Chuck Cranor.
fixes PRs 10363, 12554, 12604, 13041, 13487, 14580 and 14853.
- remove special treatment of pager_map mappings in pmaps. this is
required now, since I've removed the globals that expose the address range.
pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's
no longer any need to special-case it.
- eliminate struct uvm_vnode by moving its fields into struct vnode.
- rewrite the pageout path. the pager is now responsible for handling the
high-level requests instead of only getting control after a bunch of work
has already been done on its behalf. this will allow us to UBCify LFS,
which needs tighter control over its pages than other filesystems do.
writing a page to disk no longer requires making it read-only, which
allows us to write wired pages without causing all kinds of havoc.
- use a new PG_PAGEOUT flag to indicate that a page should be freed
on behalf of the pagedaemon when it's unlocked. this flag is very similar
to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the
pageout fails due to eg. an indirect-block buffer being locked.
this allows us to remove the "version" field from struct vm_page,
and together with shrinking "loan_count" from 32 bits to 16,
struct vm_page is now 4 bytes smaller.
- no longer use PG_RELEASED for swap-backed pages. if the page is busy
because it's being paged out, we can't release the swap slot to be
reallocated until that write is complete, but unlike with vnodes we
don't keep a count of in-progress writes so there's no good way to
know when the write is done. instead, when we need to free a busy
swap-backed page, just sleep until we can get it busy ourselves.
- implement a fast-path for extending writes which allows us to avoid
zeroing new pages. this substantially reduces cpu usage.
- encapsulate the data used by the genfs code in a struct genfs_node,
which must be the first element of the filesystem-specific vnode data
for filesystems which use genfs_{get,put}pages().
- eliminate many of the UVM pagerops, since they aren't needed anymore
now that the pager "put" operation is a higher-level operation.
- enhance the genfs code to allow NFS to use the genfs_{get,put}pages
instead of a modified copy.
- clean up struct vnode by removing all the fields that used to be used by
the vfs_cluster.c code (which we don't use anymore with UBC).
- remove kmem_object and mb_object since they were useless.
instead of allocating pages to these objects, we now just allocate
pages with no object. such pages are mapped in the kernel until they
are freed, so we can use the mapping to find the page to free it.
this allows us to remove splvm() protection in several places.
The sum of all these changes improves write throughput on my
decstation 5000/200 to within 1% of the rate of NetBSD 1.5
and reduces the elapsed time for "make release" of a NetBSD 1.5
source tree on my 128MB pc to 10% less than a 1.5 kernel took.
This will allow improvements to the pmaps so that they can more easily defer expensive operations, eg tlb/cache flush, til the last possible moment.
Currently this is a no-op on most platforms, so they should see no difference.
Reviewed by Jason.
an spl-protected "interrupt safe map" list, simply require that callers
of uvm_fault() never call us in interrupt context (MD code must make
the assertion), and check for interrupt-safe maps in uvmfault_lookup()
before we lock the map.
- pmap_enter()
- pmap_remove()
- pmap_protect()
- pmap_kenter_pa()
- pmap_kremove()
as described in pmap(9).
These calls are relatively conservative. It may be possible to
optimize these a little more.
the mapping is:
VM_PAGER_OK 0
VM_PAGER_BAD <unused>
VM_PAGER_FAIL <unused>
VM_PAGER_PEND 0 (see below)
VM_PAGER_ERROR EIO
VM_PAGER_AGAIN EAGAIN
VM_PAGER_UNLOCK EBUSY
VM_PAGER_REFAULT ERESTART
for async i/o requests, it used to be possible for the request to
be convert to sync, and the pager would return VM_PAGER_OK or VM_PAGER_PEND
to indicate whether the caller should perform post-i/o cleanup.
this is no longer allowed; pagers must now return 0 to indicate that
the async i/o was successfully started, and the caller never needs to
worry about doing the post-i/o cleanup.
Mach VM's now. Specific changes:
- Pages now need not have all of their mappings removed before being
put on the inactive list. They only need to have the "referenced"
attribute cleared. This makes putting pages onto the inactive list
much more efficient. In order to eliminate redundant clearings of
"refrenced", callers of uvm_pagedeactivate() must now do this
themselves.
- When checking the "modified" attribute for a page (for clearing
PG_CLEAN), make sure to only do it if PG_CLEAN is currently set on
the page (saves a potentially expensive pmap operation).
- When scanning the inactive list, if a page is referenced, reactivate
it (this part was actually added in uvm_pdaemon.c,v 1.27). This
now works properly now that pages on the inactive list are allowed to
have mappings.
- When scanning the inactive list and considering a page for freeing,
remove all mappings, and then check the "modified" attribute if the
page is marked PG_CLEAN.
- When scanning the active list, if the page was referenced since its
last sweep by the scanner, don't deactivate it. (This part was
actually added in uvm_pdaemon.c,v 1.28.)
These changes greatly improve interactive performance during
moderate to high memory and I/O load.
amap_free(): Assert that the amap is locked.
amap_share_protect(): Assert that the amap is locked.
amap_wipeout(): Assert that the amap is locked.
uvm_anfree(): Assert that the anon has a reference count of 0 and is
not locked.
uvm_anon_lockloanpg(): Assert that the anon is locked.
anon_pagein(): Assert that the anon is locked.
uvmfault_anonget(): Assert that the anon is locked.
uvm_pagealloc_strat(): Assert that the uobj or the anon is locked
And fix the problems these have uncovered:
amap_cow_now(): Lock the new anon after allocating it, and unref and
unlock it (rather than lock!) before freeing it in case
of an error condition. This should fix a problem reported
by Dan Carosone using cdrecord on an i386 MP kernel.
uvm_fault(): Case1B -- Lock the new anon afer allocating it, and unlock
it later when we unlock the old anon.
Case2 -- Lock the new anon after allocating it, and unlock
it later by passing it to uvmfault_unlockall() (we set anon
to NULL if we're not doing a promote fault).