do this anymore (it hasn't for quite some time). Add a couple of conditional
debugging messages to indicate why segments are not cleaned, in the event
that lfs_segclean is used.
Make the LFCNSEGWAITALL fcntl work again.
segments containing zero-block FINFO records. These records cause segments
to become uncleanable, which would eventually result in a "no clean segments"
panic.
lfs_balloc(), and use that to estimate the number of dirty pages belonging
to LFS (subsystem or filesystem). This is almost certainly wrong for
the case of a large mmap()ed region, but the accounting is tighter than
what we had before, and performs much better in the typical case of pages
dirtied through write().
into a single, system-wide table, rather than having a separate hash table
per inode. Significantly reduces the "system" cpu usage of your average
file write.
be assured that the last byte of a file is always allocated. Previously
a file extension could cause the filesystem to be flushed, writing an
inconsistent inode to disk. Although this condition would be corrected
the next time blocks were written to disk, an intervening crash would leave
the filesystem in an inconsistent state, leaving fsck_lfs to complain
of an inode "partially truncated".
into the "vfsops" link set.
- Use VFS_ATTACH() where vfsops are declared for individual file systems.
- In vfsinit(), traverse the "vfsops" link set, rather than vfs_list_initial[].
to prevent a deadlock trying to call VOP_PUTPAGES() on a VDIROP vnode.
This can happen when a stacked filesystem is mounted on top of an LFS: an
LFS dirop needs to get a vnode, which is available from the upper layer.
The corresponding lower layer vnode, however, is VDIROP, so the upper layer
can't be cleaned out since its VOP_PUTPAGES() is passed through to the lower
layer, which waits for dirops to drain before it can proceed. Deadlock.
Tweak ufs_makeinode() and ufs_mkdir() to pass the a_vpp argument through
to VOP_VALLOC().
Partially addresses PR # 26043, though it probably does not completely fix
the problem described there.
stuff under '#ifdef DEBUG', and use sysctl knobs to turn on/off particular
parts of the debugging reporting (if DEBUG is enabled). Re-enable the LFS
statistics in sysctl, while I'm there. A bit of a rototill.
Use log(9) to warn the user instead of printf(9). Since the theory is that
the Ifile is "always in cache", but the greater performance risk is
when the inode entries can't be held in cache, note these two cases
separately, at different log levels (notice and warning, respectively).
* Note when lfs_putpages(9) thinks it is not going to be writing any
pages before calling genfs_putpages(9). This prevents a situation in
which blocks can be queued for writing without a segment header.
* Correct computation of NRESERVE(), though it is still a gross
overestimate in most cases. Note that if NRESERVE() is too high, it
may be impossible to create files on the filesystem. We catch this
case on filesystem mount and refuse to mount r/w.
* Allow filesystems to be mounted whose block size is == MAXBSIZE.
* Somewhere along the line, ufs_bmaparray(9) started mangling UNWRITTEN
entries in indirect blocks again, triggering a failed assertion "daddr
<= LFS_MAX_DADDR". Explicitly convert to and from int32_t to correct
this.
* Add a high-water mark for the number of dirty pages any given LFS can
hold before triggering a flush. This is settable by sysctl, but off
(zero) by default.
* Be more careful about the MAX_BYTES and MAX_BUFS computations so we
shouldn't see "please increase to at least zero" messages.
* Note that VBLK and VCHR vnodes can have nonzero values in di_db[0]
even though their v_size == 0. Don't panic when we see this.
* Change lfs_bfree to a signed quantity. The manner in which it is
processed before being passed to the cleaner means that sometimes it
may drop below zero, and the cleaner must be aware of this.
* Never report bfree < 0 (or higher than lfs_dsize) through
lfs_statvfs(9). This prevents df(1) from ever telling us that our full
filesystems have 16TB free.
* Account space allocated through lfs_balloc(9) that does not have
associated buffer headers, so that the pagedaemon doesn't run us out
of segments.
* Return ENOSPC from lfs_balloc(9) when bfree drops to zero.
* Address a deadlock in lfs_bmapv/lfs_markv when the filesystem is being
unmounted. Because vfs_busy() is a shared lock, and
lfs_bmapv/lfs_markv mark the filesystem vfs_busy(), the cleaner can be
holding the lock that umount() is blocking on, then try to vfs_busy()
again in getnewvnode().
foo_mountfs() to foo_mount(), to match the new mountroot API.
Also, for ext2fs and lfs, copy some restructuring from ffs to allow changing
file system parameters without specifying the device name.
(ntfs could use some more work.)
and just passes it on to the file system functions. This avoids opening and
closing the device several times.
Mentioned on tech-kern some time ago, IIRC. I've been running this for a
long time.
* Rather than using mnt_maxsymlinklen to indicate that a file systems returns
d_type fields(!), add a new internal flag, IMNT_DTYPE.
Add 3 new elements to ufsmount:
* um_maxsymlinklen, replaces mnt_maxsymlinklen (which never should have existed
in the first place).
* um_dirblksiz, which tracks the current directory block size, eliminating the
FS-specific checks littered throughout the code. This may be used later to
make the block size variable.
* um_maxfilesize, which is the maximum file size, possibly adjusted lower due
to implementation issues.
Sync some bug fixes from FFS into ext2fs, particularly:
* ffs_lookup.c 1.21, 1.28, 1.33, 1.48
* ffs_inode.c 1.43, 1.44, 1.45, 1.66, 1.67
* ffs_vnops.c 1.84, 1.85, 1.86
Clean up some crappy pointer frobnication.
rarely in the normal case. (Note: This happens at reboot/shutdown time because
all file systems are unmounted.)
Also, for IN_MODIFY, use IN_ACCESSED, not IN_MODIFIED; otherwise "ls -l" of
your device node or FIFO would cause the time stamps to get written too
quickly.
setting those flags, it does not cause the inode to be written in the periodic
sync. This is used for writes to special files (devices and named pipes) and
FIFOs.
Do not preemptively sync updates to access times and modification times. They
are now updated in the inode only opportunistically, or when the file or device
is closed. (Really, it should be delayed beyond close, but this is enough to
help substantially with device nodes.)
And the most amusing part:
Trickle sync was broken on both FFS and ext2fs, in different ways. In FFS, the
periodic call to VFS_SYNC(MNT_LAZY) was still causing all file data to be
synced. In ext2fs, it was causing the metadata to *not* be synced. We now
only call VOP_UPDATE() on the node if we're doing MNT_LAZY. I've confirmed
that we do in fact trickle correctly now.